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1 Introduction to System Identification Toolbox Models

What Are Models and Model Objects?
System Identification Toolbox extends the MATLAB® computation
environment and lets you estimate linear and nonlinear mathematical models
to fit input and output data from dynamic systems.

You can estimating models using System Identification Toolbox commands in
the MATLAB Command Window, or you can work in the System Identification
Tool graphical user interface (GUI).

To quickly get started using System Identification Toolbox, see Getting
Started with System Identification for an overview of the Toolbox capabilities
and comprehensive hands-on tutorials.

This section discusses the following topics:

• “Definition of a Model” on page 1-2

• “Summary of Supported Models” on page 1-4

• “Definition of a Model Object” on page 1-5

Definition of a Model
A model of a system is a computational tool you use to answer questions about
the system without having to perform experiments. For example, you might
use a model to simulate the output of a system for a given input and analyze
the system’s response. Alternatively, you might be interested in predicting
the future output of a system.
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What Are Models and Model Objects?

Models describe the relationship between one or more measured input
signals, u(t), and one or more measured output signals, y(t). Your data can
be measured in the time-domain or frequency-domain and have single or
multiple inputs and outputs. In real systems, there are additional inputs
that you cannot measure or control, which affect the system’s output. Such
unmeasured inputs are called disturbances or noise, e(t).

���� ����

����

System Identification Toolbox lets you fit different model forms to your data.
The most general description of a dynamic system is given by:

y t g u t v t( ) ( , , ) ( )= +θ

In this case, the output of a system y(t) is described by g, which might be a
function of the time t, system parameters θ, and the history of the inputs
up to time t. v(t) is the output noise. For nonlinear models, g can take on a
variety of forms.

Note Both e(t) and v(t) represent noise. However, e(t) represents the input
noise, and v(t) represents the output noise.

For linear models, the general symbolic model description is given by:

y Gu He= +

In this equation, G is an operator that takes the input to the output and
captures the system dynamics. You can consider G to be a transfer function
between u(t) and y(t). System Identification Toolbox provides a variety of
mathematical forms for G. H is an operator that describes the properties of
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1 Introduction to System Identification Toolbox Models

the additive output disturbance and is the noise model. Estimating a linear
model always produces both the dynamic model G and the noise model H.

For an overview of supported model structures, see “Summary of Supported
Models” on page 1-4.

Summary of Supported Models
The choice of model form depends on the nature of the dynamic system,
on the type of behavior that is expected, and on the intended use of the
model. In some cases, a specific form is preferable because the estimated
parameters having physical interpretation. If you require estimates of
dynamic characteristics without detailed parametric models, you can use
nonparametric models.

If you understand the physics of your system and can represent the system
using an ordinary differential equation (ODE), then you can use System
Identification Toolbox to perform linear or nonlinear grey-box modeling. A
grey-box model is a model where the mathematical structure of the model and
possibly some of the parameters are already known. You capture the model
ODE and the parameters you want to estimate in an m-file or MEX-file, and
then use System Identification Toolbox objects, methods, and functions to
estimate the model parameters.

In many real-world situations, it is too difficult to describe a system using
known physical laws. In such cases, you can use System Identification Toolbox
to perform black-box modeling. A black-box model is a flexible structure that
is capable of describing many different systems and its parameters might
not have any physical interpretation.

System Identification Toolbox supports the following types of linear and
nonlinear models:

• Low-order, continuous-time transfer functions. See “Low-Order,
Continuous-Time Process Models” on page 5-4.

• Linear, nonparametric models, including transient-response and
frequency-response estimates. See “Correlation Analysis Models” on page
5-23 and “Spectral Analysis Models” on page 5-31.
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• Linear, polynomial models, including ARX, ARMAX, Box-Jenkins, and
Output-Error models. See “Black-Box Polynomial Models” on page 5-42.

• Linear state-space models with free, canonical, and structured
parameterizations. See “State-Space Models” on page 5-67.

• Time-series models. See “Time-Series Models” on page 5-94.

• Nonlinear ARX and Hammerstein-Wiener models. See Chapter 6,
“Estimating Nonlinear Black-Box Models”.

• Linear or nonlinear grey-box models, represented as ordinary differential
equations (ODEs) or as ordinary difference equation. See Chapter 7,
“Estimating Grey-Box Models”.

• Recursive parameter estimation of black-box polynomial models. See
Chapter 8, “Recursive Parameter Estimation”.

Getting Started with System Identification offers several tutorials to help you
quickly get started estimating linear models.

Definition of a Model Object
When you estimate a model in System Identification Toolbox, all information
about this model is stored in a model object. Model objects are entities
that store information about a model, including the mathematical form of
a model, names of input and output channels, units, names and values of
estimated parameters, parameter uncertainties, algorithm specifications,
and estimation information.

If you work in the MATLAB Command Window, you only need a basic
understanding of classes, constructors, and methods to work with model
objects in System Identification Toolbox and to navigate the reference pages.
For more information, see “Working with Model Objects” on page 1-19.

If you work in the System Identification Tool graphical user interface (GUI),
you create and operate on model objects graphically using menu options and
fields. New users should start by using the System Identification Tool to
become familiar with the Toolbox.

Whenever you estimate a linear model, the resulting model object includes
two components: the dynamic model G for measured data and the noise
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model H for unmeasured disturbances. You can extract the dynamic and
noise models from the estimated model using subreferencing, as described in
“Subreferencing Models” on page 1-36.

Note In addition to model objects, System Identification Toolbox uses
data objects to represent time- and frequency-domain data. For detailed
information about working with data objects, see Chapter 3, “Representing
Data for System Identification”.

This User’s Guide describes both the GUI approach and the MATLAB
Command Window approach for system identification. Which environment
you choose is largely a matter of preference. However, some advanced
functions can only be performed from the MATLAB Command Window. For
more information, see the introductory chapter in the Getting Started guide.
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Overview of Estimating Models
System identification is typically a trial-and-error process, where you estimate
and validate different types of models until you find the simplest model that
adequately captures the dynamics of your system.

System Identification Toolbox handles both time-domain and
frequency-domain data. There are slight differences in how you estimate
black-box models for each data domain. These differences are related to
whether you want to get continuous-time or discrete-time models.

Note Nonlinear black-box models support only time-domain data.

This section provides information about supported model types and describes
the following topics:

• “General Strategy for Model Estimation” on page 1-8

• “Supported Models for Time-Domain and Frequency-Domain Data” on
page 1-9

• “Supported Continuous-Time and Discrete-Time Models” on page 1-12

• “How Noise Affects Model Choice” on page 1-14

• “How Feedback Affects Model Choice” on page 1-15

• “Supported Estimation Algorithms” on page 1-16

For detailed information about estimating specific types of models, see the
following chapters:

• Chapter 5, “Estimating Linear Nonparametric and Parametric Models”

• Chapter 6, “Estimating Nonlinear Black-Box Models”

• Chapter 7, “Estimating Grey-Box Models”

• Chapter 8, “Recursive Parameter Estimation”
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If you are primarily working in the MATLAB Command Window, see “Working
with Model Objects” on page 1-19 for general information about commands for
creating and manipulating models.

General Strategy for Model Estimation
Because System Identification Toolbox lets you estimate different model
structures in a brief period of time, you should try many different structures
to see which one gives the best results.

Before you begin estimation, import your data into MATLAB and represent
the data in System Identification Toolbox format. If you prefer to use a
graphical user interface (GUI), import the data into the System Identification
Tool. If you prefer to work in the MATLAB Command Window, then represent
your data as an iddata or idfrd object. For more information about
representing your data for system identification, see Chapter 3, “Representing
Data for System Identification”.

To explore the basic properties of your dynamic system, you can begin
by estimating linear nonparametric models. Correlation-analysis models
estimate the impulse- and step-response of the system. Spectral-analysis
models estimate the frequency-response of the system. Exploring the
characteristics of these nonparametric models can help you select model
orders and delays for your parametric models. For more information, see
“Correlation Analysis Models” on page 5-23 and “Spectral Analysis Models”
on page 5-31.

If you can explicitly represent your system as an ordinary differential equation
with unknown parameters, you can estimate linear or nonlinear grey-box
models. Grey-box modeling is useful when you know the relationships
between variables, constraints on model behavior, or explicit equations of
change. System Identification Toolbox supports both single-output and
multioutput grey-box modeling.

• For linear models, you write an m-file to fit both time-domain and
frequency-domain data and return state matrices as a function of
user-defined parameters and information about the model.
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• For nonlinear models, you write an m-file or MEX-file to fit time-domain
data and return the derivatives of the states and output values as a
function of the states, inputs, time, parameters, and auxiliary variables.

For more information, see Chapter 7, “Estimating Grey-Box Models”.

If you cannot use grey-box modeling because it is not possible or too
time-consuming to construct ordinary differential equations for your system,
you can estimate black-box models. For an overview of available black-box
models, see the section on estimating dynamic models in Getting Started
with System Identification Toolbox. You can also find strategies for modeling
multioutput systems in the Getting Started guide.

In some cases, you can improve your initial results by refining the model
using an iterative algorithm. For more information about refining models,
see “Refining Models” on page 1-46.

Validate each model directly after estimation to help you fine-tune your
modeling strategy. When you do not achieve a satisfactory model, you can try
a different model structure and order, or try another identification algorithm.
For more information about validating and troubleshooting models, see
Chapter 9, “Plotting and Validating Models”.

After you have selected a good model to represent your system, see Chapter
10, “Postprocessing and Using Estimated Models”.

Supported Models for Time-Domain and
Frequency-Domain Data
System Identification Toolbox supports model estimation using both
time-domain and frequency-domain data. This section helps you decide which
types of models you can estimate for a specific data domain.

Time-domain data is one or more input variables u(t) and one or more output
variables y(t), sampled as a function of time. A special case of time-domain
data is time-series data, which is one or more outputs y(t) and no input.
Frequency-domain data is the Fourier transform of the input and output
time-domain signals. Frequency-response data, also called frequency-function
data, represents complex frequency-response values for a linear system
characterized by its transfer function G.
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You can measure frequency-response data values directly using a
spectrum analyzer, for example. In this section, frequency-domain and
frequency-response are both referenced as frequency-domain data for the sake
of brevity.

For grey-box models, you can estimate both continuous-time and
discrete-time models. If the grey-box model is linear, both time-domain and
frequency-domain data are supported. If the grey-box model is nonlinear,
only time-domain data is supported.

Note Frequency-domain data is not relevant to nonlinear models. Thus,
nonlinear models support only time-domain data.

For black-box models, the types of models you can estimate for time-domain
and frequency-domain data are described in the following table.
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Data Discrete-Time Model Continuous-Time Model

Time-Domain You can estimate any
linear and nonlinear
discrete-time model
supported by System
Identification Toolbox.

To get a linear, continuous-time model of
arbitrary structure for time-domain data, you
can estimate a discrete-time model, and then
use d2c to transform it to a continuous-time
model.

You can estimate the following types of
continuous-time models directly:

• Low-order, continuous-time process
models.

• Continuous-time, state-space models.

In this case, the SSparameterization
property of the model object must
be set to canonical or structured
parameterizations. You must set the
model sampling-interval property Ts to
0 before or during estimation. For more
information about these properties, see
the idss reference pages.

Frequency-Domain You can estimate only
ARX and Output-Error
(OE) polynomial models
using frequency-domain
data. Other model
structures include noise
models, and noise models
are not supported for
frequency-domain data.

You must set the data
property Ts to the
experimental data
sampling interval.
Setting Ts to 0
corresponds to taking
Fourier transforms of
continuous-time data.

You can estimate the following types of
models:

• From continuous-time data, you can
directly estimate continuous-time ARX
and Output-Error (OE) polynomial models.

• From continuous-time data, you can
estimate continuous-time state-space
models. From discrete-time data, you
can estimate continuous-time black-box
models with canonical parameterization
by setting the model sampling-interval
property Ts to 0.
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For more information about available continuous-time and discrete-time
model structures in this Toolbox, see “Supported Continuous-Time and
Discrete-Time Models” on page 1-12.

Note You can estimate a linear model using time-domain data, and then
validate the model using frequency domain data. If necessary, you can convert
frequency-domain data to time-domain data using ifft.

Supported Continuous-Time and Discrete-Time
Models
For linear and nonlinear grey-box models, you can specify any ordinary
differential or difference equation to represent your continuous-time or
discrete-time model, respectively. In the linear case, both time-domain
and frequency-domain data are supported. In the nonlinear case, only
time-domain data is supported.

For black-box models, the following tables summarize supported
continuous-time and discrete-time models.

Supported Continuous-Time Models

Model Type Description

Linear Process Models Estimate low-order models (up to three free poles) for either
time- or frequency-domain data.

Linear, Black-Box Polynomial
Models

• ARX

• ARMAX

• Output-Error

• Box-Jenkins

To get a linear, continuous-time model of arbitrary structure
for time-domain data, you can estimate a discrete-time
model, and then use d2c to transform it to a continuous-time
model.

For frequency-domain data, you can estimate directly
only the ARX and Output-Error (OE) continuous-time
models. Other structures include noise models, which
is not supported for frequency-domain data. To denote
continuous-time frequency-domain data, set the data
sampling-interval property Ts to 0.
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Supported Continuous-Time Models (Continued)

Model Type Description

State-Space Models Use any one of the following ways to estimate
continuous-time, state-space models:
• To get a linear, continuous-time model of arbitrary

structure for time-domain data, you can estimate a
discrete-time model, and then use d2c to transform it to a
continuous-time model.

• Set the set the model sampling-interval property Ts to 0,
and set the SSparameterization property of the model
object to canonical or structured parameterizations.
For more information about these properties, see the idss
reference pages.

• Use continuous-time frequency-domain data with the
data property Ts set to 0. In this case, no disturbance
model can be estimated.

Linear Grey-Box Models Estimate ordinary differential equations (ODE) for either
time- or frequency-domain data.

Nonlinear Grey-Box Models Estimate arbitrary differential equation (ODE) for
time-domain data.
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Supported Discrete-Time Models

Model Type Description

Linear Black-Box Models

• ARX

• ARMAX

• Output-Error

• Box-Jenkins

• State-Space

Estimate arbitrary-order, linear parametric models for time-
or frequency-domain data.You must set the data property Ts
to the experimental data sampling interval.

Nonlinear Black-Box Models

• Nonlinear ARX

• Hammerstein-Wiener

Estimate for time-domain data only.

Linear Grey-Box Models Estimate ordinary difference equations for time- or
frequency-domain data.

Nonlinear Grey-Box Models Estimate ordinary difference equations for time-domain
data.

How Noise Affects Model Choice
System Identification Toolbox lets you estimate a noise model for linear
models structures. For information on how to decide whether you need to
estimate a noise model, see the section on estimating dynamic models in
Getting Started with System Identification Toolbox.

Note Nonlinear ARX and Hammerstein-Wiener models do not produce
parametric noise models.

If you decide that a good noise model is important, choose the ARMAX,
Box-Jenkins, or state-space model structures that include additional
parameters for modeling noise.
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Output-Error (OE) and ARX models are not sufficiently flexible for modeling
noise. Output-Error models give a trivial noise model with H=1, and
ARX models give a noise model that is coupled to the dynamics via the A
polynomial.

How Feedback Affects Model Choice
All prediction-error methods for estimating models work equally well for
systems with and without feedback when you estimate a model structure
that includes a flexible noise model. Examples of structures with flexible
noise models include ARMAX, BJ, and state-space models. However, some
estimation methods might be unreliable if your system operates in a closed
loop such that the past outputs affect the current inputs.

This section discusses the following topics:

• “Unreliable Models in the Presence of Feedback” on page 1-15

• “Detecting Feedback in the Data” on page 1-16

Unreliable Models in the Presence of Feedback
The following models are unreliable when feedback is present in your system:

• Nonparametric correlation-analysis models, estimated by cra.

If you estimate the impulse response using impulse, the response before
time equal to 0 is caused by the feedback mechanism and does not represent
system dynamics.

• Nonparametric spectral-analysis models, estimated by etfe, spa, or
spafdr.

• State-spate models estimated using the noniterative estimation method
n4sid.

• Model structures that have inaccurate noise models, such as Output-Error
polynomial models (OE) and state-space models with the property
DisturbanceModel set to None.
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Detecting Feedback in the Data
If you are unsure about the presence of feedback, you can use System
Identification Toolbox to detect feedback in your data:

• Use the advice command on your data set. Also, you can use the feedback
command to get detailed information about the nature of the feedback.

• Use the impulse command on your data set to plot the estimated impulse
response. Significant values of the impulse response at negative lags might
indicate feedback.

• On residual analysis plots, significant correlation between residuals and
inputs at negative lags indicates feedback. For more information about
residual analysis, see “Residual Analysis Plots” on page 9-15.

Supported Estimation Algorithms
System Identification Toolbox provides the following three types of estimation
algorithms:

• “Nonparametric Estimation Algorithms” on page 1-16

• “Noniterative Algorithms for State-Space, ARX, and AR Models” on page
1-16

• “Prediction-Error Algorithm for Parametric Models” on page 1-17

Nonparametric Estimation Algorithms
Correlation-analysis and spectral-analysis algorithms, also called
nonparametric estimation algorithms, provide direct estimation of transient
and frequency response of the system, respectively. These algorithms only
assume that the system is linear and do not impose a specific model structure.

For more information about nonparametric estimation, see “Correlation
Analysis Models” on page 5-23 and “Spectral Analysis Models” on page 5-31.

Noniterative Algorithms for State-Space, ARX, and AR Models
Noniterative algorithms in System Identification Toolbox includes linear
least-squares, instrumental-variable, and subspace methods.
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For linear state-space models, you can use the subspace method, called
N4SID. You can use the subspace method N4SID to get an initial model
(see n4sid), and then try to refine the initial estimate using the iterative
prediction-error method PEM (see pem). N4SID is faster than PEM, but
is typically less accurate and robust, and requires additional arguments
that might be difficult to specify. For more information about estimating
state-space models, see “State-Space Models” on page 5-67.

For linear ARX and AR models, you can choose between the ARX and
IV algorithms. ARX implements the least squares estimation method
that uses QR-factorization for overdetermined linear equations. IV is the
instrumental variable method. For more information about IV, see the section
on variance-optimal instruments in System Identification: Theory for the
User, Second Edition, by Lennart Ljung, Prentice Hall, 1999.

The ARX and IV algorithms differ in the way they treat noise. ARX assumes
white noise. However, the instrumental variable algorithm, IV, is not sensitive
to noise color. Thus, use IV when the noise in your system is not completely
white and it is incorrect to assume white noise. If the models you obtained
using ARX are inaccurate, try using IV.

Note AR models apply to time-series data, which has no input. For more
information, see “Time-Series Models” on page 5-94. For more information
about working with AR and ARX models, see “Black-Box Polynomial Models”
on page 5-42.

Prediction-Error Algorithm for Parametric Models
You can use the iterative prediction-error minimization (PEM) (maximum
likelihood) algorithm for all linear and nonlinear model types.

If you are using the System Identification Tool GUI, you can specify PEM for
low-order continuous-time process models, linear state-space, and polynomial
models. If you are working in the MATLAB Command Window, you can use
the pem command to both construct and estimate these linear models and to
also estimate linear and nonlinear grey-box models.
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Alternatively, you can use PEM to try to refine initial parameter estimates
for all linear and nonlinear parametric models. For more information about
refining initial model estimates, see “Refining Models” on page 1-46.

PEM uses optimization to minimize the cost function, defined as follows for
scalar outputs:

V G H e tN
t

N
,( ) = ( )

=
∑ 2

1

where e(t) is the difference between the measured output and the predicted
output of the model. For a linear model, this error is defined by the following
equation:

e t H q y t G q u t( ) ( ) ( ) ( ) ( )= −[ ]−1

e(t) is a vector and the cost function V G HN ,( ) is a scalar value. The subscript
N indicates that the cost function is a function of the number of data samples
and becomes more accurate for larger values of N. For multioutput models,
the previous equation is more complex.

For black-box models, PEM estimates an initial model and then varies the
parameter values along a specific direction to decrease the cost function. As
with any nonlinear optimization algorithm, there is a chance that the model
might find a local minimum that is not accurate for a specific system.
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Working with Model Objects
When you estimate a model in System Identification Toolbox, all the
information about this model is stored in a model object. Model objects
store model information, such as the mathematical form of a model,
names of input and output channels, units, names and values of estimated
parameters, parameter uncertainties, algorithm specifications, and estimation
information. A model object offers the convenience of manipulating the model
and model properties as a single entity.

System Identification Toolbox provides different model objects to represent
the supported model types. When you are working in the MATLAB Command
Window or writing m-file scripts, you create and operate on model objects
directly. For a tutorial on estimating models in the MATLAB Command
Window, see Getting Started with System Identification Toolbox.

The section discusses the following topics:

• “Basic Object-Oriented Concepts” on page 1-19

• “Types of Model Objects” on page 1-21

• “Commands for Model Estimation” on page 1-23

• “Example – Estimating Model Objects” on page 1-24

• “Model Properties” on page 1-30

• “Subreferencing Models” on page 1-36

• “Concatenating Model Objects” on page 1-41

• “Merging Model Objects” on page 1-44

Basic Object-Oriented Concepts
There are four basic concepts you need to get started working with objects
in System Identification Toolbox. These concepts include classes, methods,
constructors, and properties.

Model objects are based on model classes. Each class is a blueprint that
defines the following information about your model:

• How the object stores data.
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• Which operations you can perform on the object.

System Identification Toolbox includes nine different classes for representing
models. For example, idpoly represents linear black-box polynomial models,
and idss represents linear state-space models. For a complete list of available
model objects, see “Types of Model Objects” on page 1-21.

The way a model object stores information is defined by the properties of the
corresponding class. For example, the idpoly model object has a property
called InputName for storing one or more input channel names. The set of
available properties differs for different model objects.

The allowed operations on an object, called methods, are also defined by the
corresponding class. In System Identification Toolbox, some methods have
the same name but apply to multiple model objects. For example, the method
bode create a bode plot for all linear model types. However, other methods are
unique to a specific model object. For example, the estimation method n4sid
is unique to the state-space model object idss.

Every class has a method for creating objects based on this class, called
a constructor. Using a constructor creates a specific instance of the
corresponding class and is called instantiating the object. In System
Identification Toolbox, the constructor name is the same as the class name.
For example, idpoly is both the name of the class representing linear
black-box polynomial models and the constructor for instantiating the model
object with specific property values.

You use model constructors to create a model object by specifying all required
model properties explicitly. You use the constructed model for simulation
or as an initial guess for iterative estimation. In most cases, you use the
estimation commands instead of constructors. These estimation commands
both construct the model object and estimate the model parameters. For an
example, see “Example – Estimating Model Objects” on page 1-24.
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Note Although the basic definitions in this section are formulated in the
context of model object, they also apply to the data objects used to represent
data in System Identification Toolbox. For detailed information about
working with data objects, see Chapter 3, “Representing Data for System
Identification”.

Types of Model Objects
The following table summarizes the model classes available in System
Identification Toolbox for representing various types of models. This table also
specifies whether a specific model type supports single or multiple outputs.

For information on how to both construct and estimate models with a single
command, see “Commands for Model Estimation” on page 1-23. After
estimating models in System Identification Toolbox, you can recognize these
model objects in the MATLAB workspace by their class names.

If you need to create a model to simulate data or to specify a model structure
with initial parameters, use a model constructor to create the object. For more
information, see the corresponding reference pages for each model object. The
name of the object is the same as the name of the constructor for that object.

Summary of Model Classes

Model Class Model Type Single Output or Multiple
Outputs?

idarx Represents parametric
multiple-output ARX models.
Also represents nonparametric
transient-response models.

Single- or multiple-output
models.

idfrd Represents nonparametric
frequency-response model.

Single- or multiple-output
models.

idproc Represents continuous-time,
low-order process models.

Single-output models only.
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Summary of Model Classes (Continued)

Model Class Model Type Single Output or Multiple
Outputs?

idpoly Represents linear, black-box
polynomial models:

• ARX

• ARMAX

• Output-Error

• Box-Jenkins

Single-output models only.

idss Represents linear, state-space
models.

Single- or multiple-output
models.

idgrey Represents linear state-space
model (grey-box models) in
terms of your own variables and
parameters. You write an m-file
that translates user parameters
to state-space matrices.

Single- and multiple-output
models.

idnlgrey Represents nonlinear, grey-box
models. You write an m-file
or MEX-file to represent the
set of first-order differential or
difference equations.

Supports single- and
multiple-output models.

idnlarx Represents nonlinear ARX
models, which define the
predicted output as a nonlinear
function of past inputs and
outputs.

Single- or multiple-output
models. Does not support time
series.

idnlhw Represents
Hammerstein-Wiener models,
which include a linear dynamic
system with nonlinear static
transformations of inputs and
outputs.

Single- or multiple-output
models. Does not support time
series.
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Commands for Model Estimation
The quickest way to both construct a model object and estimate the model in
System Identification Toolbox is to use estimation commands. This approach
differs from the standard object-oriented approach, where you first use a
constructor to instantiate the object, and then use an estimation method
to estimate the model.

Note The standard object-oriented approach does apply to grey-box models,
where you must define the model structure before estimating the model
parameters.

The estimator pem corresponds to the iterative prediction-error method, as
described in “Supported Estimation Algorithms” on page 1-16. For linear
models, you can use pem to both construct and estimate a model. You can
also use pem to refine all initial parametric model estimates, as described in
“Refining Models” on page 1-46. For nonlinear models, you can only refine
the models you estimated using nlarx and nlhw.

For ARMAX, Box-Jenkins, and Output-Error Models—which can only be
estimated using the iterative prediction-error method—use the armax, bj, and
oe estimation commands, respectively. These commands are versions of pem
with simplified syntax for these specific model structures.

The following table summarizes System Identification Toolbox estimation
methods for parametric models. In this table, pem is listed in those case
where you can use this command to both construct and estimate a model.
For detailed information about using each estimation command, see the
corresponding reference pages.

Construction and Estimation Commands

Model Type Model Estimation Command

Continuous-time low-order
process models

pem
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Construction and Estimation Commands (Continued)

Model Type Model Estimation Command

Linear black-box
polynomial models:

• ARX

• ARMAX

• Box-Jenkins (BJ)

• Output-Error (OE)

armax (ARMAX only)
arx (ARX only)
bj (BJ only)
iv4 (ARX only)
oe (OE only)
pem (for all models)

Linear state-space models n4sid
pem

Linear time-series models ar
arx (for multiple outputs)
ivar

Nonlinear ARX nlarx

Hammerstein-Wiener nlhw

Example – Estimating Model Objects
In System Identification Toolbox, you can use estimation commands to both
construct a model object and estimate the model parameters. In this example,
you estimate a linear, polynomial model with an ARMAX structure for a
three-input and single-output (MISO) system using the iterative estimation
method armax. For a summary of all available estimation commands in
System Identification Toolbox, see “Commands for Model Estimation” on
page 1-23.

1 Load a sample data set z8 with three inputs and one output, measured at 1
sec intervals and containing 500 data samples:

load iddata8
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2 Use armax to both construct the idpoly model object, and estimate the
parameters:

A q y t B q u t nk C q e ti i i
i

nu
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=
∑

1

Typically you try different model orders and compare results, ultimately
choosing the simplest model that best describes the system dynamics. The
following command specifies the estimation data set, z8, and the orders of
the A, B, and C polynomials as na, nb, and nc, respectively. nk of [0 0 0]
specifies that there is no input delay for all three input channels.

m_armax=armax(z8,'na',4,...
'nb',[3 2 3],...
'nc',4,...
'nk',[0 0 0],...
'focus', 'simulation',...
'tolerance',1e-5,...
'maxiter',50);

covariance, focus, tolerance, and maxiter are optional arguments
specify additional information about the computation. focus specifies
whether the model is optimized for simulation or prediction applications,
tolerance and maxiter specify when to stop estimation. For more
information about these properties, see the algorithm properties
reference pages.

armax is a version of pem with simplified syntax for the ARMAX model
structure. The armax method both constructs the idpoly model object
and estimates its parameters.
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Tip Instead of specifying model orders and delays as individual
property-value pairs, you can use the equivalent shorthand notation that
includes all of the order integers in a single vector, as follows:

m_armax=armax(z8,[4 3 2 3 4 0 0 0],...
'focus', 'simulation',...
'tolerance',1e-5,...
'maxiter',50);

3 To view information about the resulting model object, type the following at
the MATLAB prompt:

m_armax

MATLAB provides the following information about this model object:

Discrete-time IDPOLY model: A(q)y(t) = B(q)u(t) + e(t)

A(q) = 1 - 1.255q^-1 + 0.2551q^-2 + 0.2948q^-3 - 0.0619q^-4
B1(q) = -0.09168 + 1.105q^-1 + 0.7399q^-2
B2(q) = 1.022 + 0.129q^-1
B3(q) = -0.07605 + 0.08681q^-1 + 0.5619q^-2
C(q) = 1-0.06117q^-1 - 0.1461q^-2 + 0.009862q^-3 - 0.04313q^-4

Estimated using ARMAX from data set z8
Loss function 2.23844 and FPE 2.35202
Sampling interval: 1

m_armax is an idpoly model object. The coefficients represent estimated
parameters of this polynomial model.

Tip You can use present(m_armax) to show additional
information about the model, including parameter uncertainties.
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4 To view all property values for this model, type the following command:

get(m_armax)

MATLAB lists the following object properties and values:

ans =
a: [1 -1.2549 0.2551 0.2948 -0.0619]
b: [3x3 double]
c: [1 -0.0612 -0.1461 0.0099 -0.0431]
d: 1
f: [3x1 double]

da: []
db: [3x0 double]
dc: []
dd: []
df: [3x0 double]
na: 4
nb: [3 2 3]
nc: 4
nd: 0
nf: [0 0 0]
nk: [0 0 0]

InitialState: 'Auto'
Name: ''

Ts: 1
InputName: {3x1 cell}
InputUnit: {3x1 cell}

OutputName: {'y1'}
OutputUnit: {''}

TimeUnit: ''
ParameterVector: [16x1 double]

PName: {}
CovarianceMatrix: [16x16 double]

NoiseVariance: 0.9932
InputDelay: [3x1 double]
Algorithm: [1x1 struct]

EstimationInfo: [1x1 struct]
Notes: {}

UserData: []
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5 The Algorithm and EstimationInfo model properties are structures. To
view the properties and values inside these structure, use dot notation.
For example:

m_armax.Algorithm

This action displays the complete list of Algorithm properties and values
that specify the iterative computational algorithm.

ans =
Approach: 'Pem'

Focus: 'Simulation'
MaxIter: 50

Tolerance: 1.0000e-005
LimitError: 1.6000

MaxSize: 'Auto'
SearchDirection: 'Auto'
FixedParameter: []

Trace: 'Off'
N4Weight: 'Auto'

N4Horizon: 'Auto'
Advanced: [1x1 struct]
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Similarly, to view the properties and values of the EstimationInfo
structure, type the following command:

m_armax.EstimationInfo

This action displays the complete list of read-only EstimationInfo
properties and values that describe the estimation data set, quantitative
measures of model quality (loss function and FPE), the number of iterations
actually used, and the behavior of the iterative model estimation.

ans =
Status: 'Estimated model (PEM)'
Method: 'ARMAX'

LossFcn: 0.9602
FPE: 1.0263

DataName: 'z8'
DataLength: 500

DataTs: 1
DataDomain: 'Time'

DataInterSample: {3x1 cell}
WhyStop: 'Near (local) minimum, (norm(g)<tol).'

UpdateNorm: 8.0572e-006
LastImprovement: '7.4611e-006%'

Iterations: 4
InitialState: 'Zero'

Warning: 'None'

6 If you want to repeat the model estimation using different model orders,
but keep the algorithm properties the same, you can store the model
properties used for m_armax in a variable, as follows:

myAlg=m_armax.Algorithm

This action stores the specified focus, tolerance, and maxiter, and the
default algorithm.

7 To reuse the algorithm properties in estimating the ARMAX model with
different orders, use the following command:

m_armax2=armax(z8,[4 3 2 3 3 1 1 1],...
'algorithm',myAlg);
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Model Properties
The way a model object stores information is defined by the fields, or
properties, of the corresponding class.

This section discusses the following topics:

• “Categories of Model Object Properties” on page 1-30

• “Specifying Model Properties in the Estimator” on page 1-32

• “Accessing Model Properties” on page 1-33

• “Help on Properties in MATLAB Command Window” on page 1-35

Categories of Model Object Properties
Each model object has properties for storing information that is relevant only
to that specific model type. However, the idarx, idgrey, idpoly, idproc,
and idss model objects are based on the idmodel superclass and share all
idmodel properties.

Similarly, the nonlinear models idnlarx, idnlhw, and idnlgrey are based on
the idnlmodel superclass and share all idnlmodel properties.

In general, all model objects have properties that belong to the following
general categories:

• Names of input and output channels, such as InputName and OutputName.

• Sampling interval of the model, such as Ts.

• Units for time or frequency.

• Properties that store estimation results and model uncertainty.

• User comments, Notes and Userdata.

All model objects (except as notes) have the following properties:
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• Algorithm

This structure includes fields that specify how the nonlinear optimization
search method works. Algorithm includes another structure, called
Advanced, which provides additional flexibility for setting the optimization
algorithm. Different fields apply for different estimation techniques.

For linear parametric models, Algorithm specifies the frequency weighing
of the estimation using the Focus property.

Note Does not apply to idfrd models.

• EstimationInfo

This structure includes read-only fields that describe the estimation data
set, quantitative model quality measures, the number of iterations actually
used, how the initial states were handled, and whether any warnings were
encountered during the estimation.

For information on how to list available object properties, see “Help on
Properties in MATLAB Command Window” on page 1-35.
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Specifying Model Properties in the Estimator
If you are estimating a new model, you can specify model properties directly
in the estimator syntax. For a complete list of model estimation commands,
see “Commands for Model Estimation” on page 1-23.

The following commands load the sample data, z8, and estimate an ARMAX
model. The arguments of the armax estimator specify model properties as
property-value pairs.

load iddata8
m_armax=armax(z8,'na',4,...

'nb',[3 2 3],...
'nc',4,...
'nk',[0 0 0],...
'focus', 'simulation',...
'covariance', 'none',...
'tolerance',1e-5,...
'maxiter',50);

focus, covariance, tolerance, and maxiter are fields in the Algorithm
model property.

When using the commands that let you both construct and estimate a model,
as described in “Commands for Model Estimation” on page 1-23, you can
specify all top-level model properties in the estimator syntax. Top-level
properties are those listed when you type get(object_name). You can also
specify the top-level fields of the Algorithm structure directly in the estimator
using property-value pairs—such as focus in the previous example—without
having to define the structure fields first.

For linear models, you can use a shortcut to specify the second-level
Algorithm properties, such as Advanced. With this syntax, you can reference
the structure fields by name without specifying the structure to which these
fields belong.

However, when estimating nonlinear black-box models, you must set the
specific fields of the Advanced Algorithm structure and the nonlinearity
estimators before estimation. For example, suppose you want to set the value
of the wavenet object property Options, which is a structure. The following
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commands set the Options values before estimation and include the modified
wavenet object in the estimator:

% Define wavenet object with defaul properties
W = wavenet;
% Specify variable to represent Options field
O = W.Options;
% Modify values of specific Options fields
O.MaxLevels = 5 ;
O.DilationStep = 2;
% Estimate model using new Options settings
M = nlarx(data,[2 2 1],wavenet('options',O))

where O specifies the values of the Options structure fields and M is the
estimated model. For more information about these and other functions, see
the corresponding reference pages.

Accessing Model Properties
To view all the properties and values of any model object, use the get
command. For example, type the following at the MATLAB prompt to load
sample data, compute an ARX model, and list the model properties:

load iddata8
m_arx=arx(z8,[4 3 2 3 0 0 0]);
get(m_arx)

To access a specific property, use dot notation. For example, to view the
A matrix containing the estimated parameters in the previous model, type
the following command:

m_arx.a

MATLAB returns the following result:

ans =
1.0000 -0.8441 -0.1539 0.2278 0.1239

Similarly, to access the uncertainties in these parameter estimates, type the
following command:

m_arx.da
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MATLAB returns the following result:

ans =
0 0.0357 0.0502 0.0438 0.0294

Property names are not case sensitive. You do not need to type the entire
property name if the portion of the name you do enter uniquely identifies
the property.

To change property values for an existing model object, use the set function
or dot notation. For example, to change the input delays for all three input
channels to [1 1 1], type the following at the MATLAB prompt:

set(m_arx,'nk',[1 1 1])

or equivalently

m_arx.nk = [1 1 1]

Some model properties, such as Algorithm, are structures. To access the
fields in this structure, use the following syntax:

model.algorithm.PropertyName

where PropertyName represents any of the Algorithm fields. For example,
to change the maximum number of iterations using the MaxIter property,
type the following command:

m_arx.algorithm.MaxIter=50

To verify the new property value, type the following:

m_arx.algorithm.MaxIter

Note PropertyName refers to fields in a structure and is case sensitive. You
must type the entire property name. Use the Tab key when typing property
names to get completion suggestions.
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Help on Properties in MATLAB Command Window
If you need quick assistance on model properties while working in the
MATLAB Command Window, you can use the idprops command to list the
properties and values for each object.

Some model objects are based on the superclasses idmodel and idnlmodel
and inherit the properties of these superclasses. For such model object, you
must look up for property for both the model object and its superclass.

The following table summarizes the commands for getting help on object
properties in the MATLAB Command Window.

Help Commands for Model Properties

Model Class Help Commands

idarx idprops idarx
Also inherits properties from idmodel.

idfrd idprops idfrd

idnlmodel idprops idnlmodel

idmodel idprops idmodel
idprops idmodel Algorithm
idprops idmodel EstimationInfo
Also see the Algorithm and EstimationInfo reference pages.

idproc idprops idproc
Also inherits properties from idmodel.

idpoly idprops idpoly
Also inherits properties from idmodel.

idss idprops idss
Also inherits properties from idmodel.

idgrey idprops idgrey
Also inherits properties from idmodel.
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Help Commands for Model Properties (Continued)

Model Class Help Commands

idnlgrey idprops idnlgrey
idprops idnlgrey Algorithm
idprops idnlgrey EstimationInfo
Also inherits properties from idnlmodel.

idnlarx idprops idnlarx
idprops idnlarx Algorithm
idprops idnlarx EstimationInfo
Also inherits properties from idnlmodel.

idnlhw idprops idnlhw
idprops idnlhw Algorithm
idprops idnlhw EstimationInfo
Also inherits properties from idnlmodel.

Subreferencing Models
You can create models with subsets of inputs and outputs from existing
models with multiple inputs and outputs using subreferencing.

Subreferencing is also useful when you want to generate model plots for only
certain channel, such as when you are exploring multioutput models for input
channels that have minimal effect on the output.

System Identification Toolbox supports subreferencing operations for idarx,
idgrey, idpoly, idproc, idss, and idfrd model objects.

In addition to subreferencing the model for specific combinations of measured
inputs and output, you can subreference dynamic and noise models
individually.

Note Subreferencing nonlinear models is not supported.

This section discusses the following topics:
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• “Subreferencing Specific Measured Channels” on page 1-37

• “Subreferencing Measured and Noise Models” on page 1-38

• “Treating Noise Channels as Measured Inputs” on page 1-39

Subreferencing Specific Measured Channels
Use the following general syntax to subreference specific input and output
channels in models:

model(outputs,inputs)

In this syntax, outputs and inputs specify channel indexes or channel names.

To select all output or all input channels, use a colon (:). To select no channels,
specify an empty matrix ([]). If you need to reference several channel names,
use a cell array of strings.

For example, to create a new model m2 from m from inputs 1 ('power') and
4 ('speed') to output number 3 ('position'), use either of the following
two equivalent commands:

m2 = m('position',{'power','speed'})

or

m2 = m(3,[1 4])

For a single-output model, you can use the following syntax to subreference
specific input channels without ambiguity:

m3 = m(inputs)

Similarly, for a single-input model, you can use the following syntax to
subreference specific output channels:

m4 = m(outputs)
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Subreferencing Measured and Noise Models
For linear models, the general symbolic model description is given by:

y Gu He= +

G is an operator that takes the measured inputs u to the outputs and captures
the system dynamics.

H is an operator that describes the properties of the additive output
disturbance and takes the hypothetical (unmeasured) noise source inputs to
the outputs. H represents the noise model. When you estimate a noise model,
System Identification Toolbox includes one noise channel at the input e for
each output in your system.

Therefore, linear, parametric models represent input-output relationships for
two kinds of input channels: measured inputs and (unmeasured) noise inputs.
For example, consider the ARX model given by the following equation:

A q y t B q u t nk e t( ) ( ) ( ) ( )= −( ) +

or

y t
B q
A q

u t
A q

e t( )
( )
( ) ( )

( )= ( ) + 1

In this case, the dynamic model is the relationship between the measured

input u and output y, G B q
A q= ( )

( ) . The noise model is the contribution of the

input noise e to the output y, given by H A q= 1
( ) .
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Suppose that the model m contains both a dynamic model G and a noise model
H. To create a new model by subreferencing G due to measured inputs, use
the following syntax:

m_G = m('measured')

Tip Alternatively, you can use the following shorthand syntax: m_G = m('m')

To create a new model by subreferencing H due to unmeasured inputs, use
the following syntax:

m_H = m('noise')

Tip Alternatively, you can use the following shorthand syntax: m_H = m('n')

This operation creates a time-series model from m by ignoring the measured
input.

The covariance matrix of e is given by the idmodel property NoiseVariance,
which is the matrix Λ :

Λ = LLT

The covariance matrix of e is related to v, as follows:

e Lv=
where v is white noise with an identity covariance matrix representing
independent noise sources with unit variances.

Treating Noise Channels as Measured Inputs
To study noise contributions in more detail, it might be useful to convert the
noise channels to measured channels using noisecnv:

m_GH = noisecnv(m)
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This operation creates a model m_GH that represents both measured inputs u
and noise inputs e, treating both sources as measured signals. m_GH is a model
from u and e to y, describing the transfer functions G and H.

Converting noise channels to measured inputs loses information about
the variance of the innovations e. For example, step response due to the
noise channels does not take into consideration the magnitude of the noise
contributions. To include this variance information, normalize e such that v
becomes white noise with an identity covariance matrix, where

e Lv=

To normalize e, use the following command:

m_GH = noisecnv(m,'Norm')

This command creates a model where u and v are treated as measured
signals, as follows:

y t Gu t HLv G HL
u
v

( ) ( )= + = [ ]⎡
⎣
⎢
⎤

⎦
⎥

For example, the scaling by L causes the step responses from v to y to reflect
the size of the disturbance influence.

The converted noise sources are named in a way that relates the noise channel
to the corresponding output. Unnormalized noise sources e are assigned
names such as 'e@y1', 'e@y2', ..., 'e@yn', where 'e@yn' refers to the noise
input associated with the output yn. Similarly, normalized noise sources v,
are named 'v@y1', 'v@y2', ..., 'v@yn'.

Note When you plot models in the GUI that include noise sources, you
can select to view the response of the noise model corresponding to specific
outputs. For more information, see “Selecting Measured and Noise Channels
in Plots” on page 2-33.
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Concatenating Model Objects
You can perform horizontal and vertical concatenation of model objects to
grow the number of inputs or outputs in the model.

Note Concatenation is supported for linear models only.

When you concatenate parametric models, such as idarx, idgrey, idpoly,
idproc, and idss model objects, the resulting model combines the parameters
of the individual models.

You can also concatenate nonparametric models, which contain the estimated
impulse-response (idarx object) and frequency-response (idfrd object) of a
system.

In case of idfrd models, concatenation combines information in the
ResponseData properties of the individual model objects. ResponseData is an
ny-by-nu-by-nf array that stores the response of the system, where ny is the
number of output channels, nu is the number of input channels, and nf is the
number of frequency values. The (j,i,:) vector of the resulting response
data represents the frequency response from the ith input to the jth output at
all frequencies. For more information, see the corresponding reference pages.

This section discusses the following topics:

• “Horizontal Concatenation of Model Objects” on page 1-41

• “Vertical Concatenation of Model Objects” on page 1-42

• “Concatenating Noise Spectral Data of idfrd Objects” on page 1-43

If you have Control System Toolbox, see “Combining Model Objects” on page
10-24 about additional functionality for combining models.

Horizontal Concatenation of Model Objects
Horizontal concatenation of model objects requires that they have the same
outputs. If the output channel names are different and their dimensions are
the same, the concatenation operation uses the names of output channels in
the first model object you listed. Input channels must have unique names.
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The following syntax creates a new model object m that contains the horizontal
concatenation of m1,m2,...,mN:

m = [m1,m2,...,mN]

m takes all of the inputs of m1,m2,...,mN to the same outputs as in the
original models. The following diagram is a graphical representation of
horizontal concatenation of the models.
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Note Horizontal concatenation of idarx objects creates an idss object.

Vertical Concatenation of Model Objects
Vertical concatenation combines output channels of specified models. Vertical
concatenation of model objects requires that they have the same inputs
and frequency vectors. If the input channel names are different and their
dimensions are the same, the concatenation operation uses the names of
input channels in the first model object you listed. Output channels must
have unique names.

Note You cannot concatenate the single-output idproc and idpoly model
objects.
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The following syntax creates a new model object m that contains the vertical
concatenation of m1,m2,...,mN:

m = [m1;m2;... ;mN]

m takes the same inputs in the original models to all of the output of
m1,m2,...,mN. The following diagram is a graphical representation of vertical
concatenation of frequency-response data.

������� ������	

����������������������
���������������������	

��

�	
��

��

�	

��

�	

�	
��

��������
�������

����
������

��

��

�	

Concatenating Noise Spectral Data of idfrd Objects
When the idfrd objects contain the frequency-response data you measured
or constructed manually, the concatenation operation combines only the
ResponseData properties. Because noise spectral data does not exist (unless
you also entered it manually), SpectralData is empty in both the individual
idfrd objects and the concatenated idfrd object.

However, when the idfrd objects are spectral models that you estimated, the
SpectralData property is not empty and contains the power spectra and
cross spectra of the output noise in the system. For each output channel, the
Toolbox estimates one noise channel to explain the difference between the
output of the model and the measured output.

When the SpectralData property of individual idfrd objects is not empty,
horizontal and vertical concatenation handle SpectralData, as follows.

In case of horizontal concatenation, there is no meaningful way to combine the
SpectralData of individual idfrd objects, and the resulting SpectralData
property is empty. An empty property results because each idfrd object has
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its own set of noise channels, where the number of noise channels equals the
number of outputs. When the resulting idfrd object contains the same output
channels as each of the individual idfrd objects, it cannot accommodate the
noise data from all the idfrd objects.

In case of vertical concatenation, the Toolbox concatenates individual noise
models diagonally. The following shows that m.SpectrumData is a block
diagonal matrix of the power spectra and cross spectra of the output noise in
the system:

m s
m s

mN s

.
.

.

=

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

1 0

0
O

s in m.s is the abbreviation for the SpectrumData property name.

Merging Model Objects
You can merge models of the same structure to obtain a model with
parameters that are statistically-weighed means of the parameters of the
individual models. When computing the merged model, the covariance
matrices of the individual models determine the weights of the parameters.

You can perform the merge operation for the idarx, idgrey, idpoly, idproc,
and idss model objects.

Note Each merge operation merges the same type of model object.

Merging models is an alternative to merging data sets into a single
multiexperiment data set, and then estimating a model for the merged data.
Whereas merging data sets assumes that the signal-to-noise ratios are about
the same in the two experiments, merging models allows greater variations
in model uncertainty, which might result from greater disturbances in an
experiment.
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When the experimental conditions are about the same, merge the data
instead of models. This approach is more efficient and typically involves
better-conditioned calculations. For more information about merging data
sets into a multiexperiment data set, see “Creating Multiexperiment Data
Sets” on page 3-37.

For more information about merging models, see the merge reference pages.
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Refining Models
There are two situations where you can refine estimates of linear and
nonlinear parametric models using the prediction-error method.

In the first situation, you have already estimated a parametric model using
any of the available iterative or noniterative methods and wish to refine
the model. However, if your model captures the essential dynamics, it is
usually not necessary to continue improving the fit—especially when the
improvement is a fraction of 1 percent.

In the second situation, you constructed a model using one of the model
constructors described in “Types of Model Objects” on page 1-21. In this case,
you built initial parameter guesses into the model structure and wish to refine
these parameter values. This case applies only to linear models and nonlinear
grey-box models. Because it is difficult to specify nonlinear model parameters
in advance, you typically only estimate nonlinear models.

When you refine a model, you must provide two essential inputs: the
parametric model and the data. You can either use the same data set for
refining the model as the one you originally used to estimate the model, or
you can use a different data set.

If you are working in the System Identification Tool GUI, you can refine
parameter estimates of any linear or nonlinear model already in the GUI. For
information on importing models into the GUI, see “Importing Models into the
System Identification Tool” on page 2-24.

This section discusses the following topics:

• “Refining Linear Parametric Models in the GUI” on page 1-47

• “Refining Nonlinear Black-Box Models in the GUI” on page 1-48

• “Using pem to Refine Models ” on page 1-49

For more information about the prediction-error algorithm, see “Supported
Estimation Algorithms” on page 1-16.
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Refining Linear Parametric Models in the GUI
The following procedure assumes that the model you wish to refine is already
in the Model Board in the System Identification Tool window. You might have
estimated this model in the current session or imported the model from the
MATLAB workspace. For more information about estimating linear models,
see Chapter 5, “Estimating Linear Nonparametric and Parametric Models”.

1 In the System Identification Tool window, verify that you have the correct
data set in the Working Data area for refining your model.

If you are using a different data set than the one you used to estimate the
model, drag the correct data set into the Working Data area. For more
information about specifying estimation data, see “Specifying Working
Data and Validation Data” on page 2-23.

2 Select Estimate > Linear parametric models to open the Linear
Parametric Models dialog box, if this dialog box is not already open.

3 In the Linear Parametric Models dialog box, select By Initial Model from
the Structure list.

4 Enter the model name into the Initial model field, and press Enter.

The model name must be in the Model Board of the System Identification
Tool window or a variable in the MATLAB workspace.

Tip As a shortcut for specifying a model in the Model Board, you can
drag the model icon from the System Identification Tool window into the
Initial model field.

When you enter the model name, algorithm settings in the Linear
Parametric Models dialog box override the initial model settings.

5 Modify the algorithm settings, displayed in the Linear Parametric Models
dialog box, if necessary.

6 Click Estimate to refine the model.
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7 Validate the new model, as described in Chapter 9, “Plotting and Validating
Models”.

Tip To continue refining the model using additional iterations, click
Continue iter. This action continues parameter estimation using the most
recent model.

Refining Nonlinear Black-Box Models in the GUI
The following procedure assumes that the model you wish to refine is already
in the Model Board in the System Identification Tool window. You might have
estimated this model in the current session or imported the model into the
GUI from the MATLAB workspace. For more information about estimating
nonlinear black-box models, see Chapter 6, “Estimating Nonlinear Black-Box
Models”.

1 In the System Identification Tool window, verify that you have the correct
data set in the Working Data area for refining your model.

If you are using a different data set than the one you used to estimate the
model, drag the correct data set into the Working Data area. For more
information about specifying estimation data, see “Specifying Working
Data and Validation Data” on page 2-23.

2 Select Estimate > Nonlinear models to open the Nonlinear Models
dialog box, if this dialog box is not already open.

3 In the Nonlinear Models dialog box, select the model you want to refine
in the Initial model list.

The list includes only those models that have the selected Model structure
and the same number of inputs and outputs as the estimation data in
Working Data area.

Any settings in the Nonlinear Models dialog box related to model structure
and estimation algorithms are overridden by the selected initial model.

4 Click Estimate to refine the model.
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5 Validate the new model, as described in Chapter 9, “Plotting and Validating
Models”.

Tip To continue refining the model directly from the Estimation tab, select
the Use last estimated model as initial model for the next estimation
check box, and click Estimate. This action automatically selects the most
recent model in the Initial model list in the Model Type tab.

Using pem to Refine Models
If you are working in the MATLAB Command Window, you can use pem to
refine parametric model estimates.

The general syntax for refining initial models is as follows:

m = pem(data,init_model)

pem uses the properties of the initial model unless you specify different
properties. For more information about specifying model properties directly in
the estimator, see “Specifying Model Properties in the Estimator” on page 1-32.
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The following commands provide an example of how to estimate an initial
model and try to refine this model using pem:

load iddata8

% Split the data z8 into two parts.
% Create new data object with first hundred samples
z8a = z8(1:100);

% Create new data object with remaining samples
z8b = z8(101:end);

% Estimate ARMAX model with default Algorithm
% properties, na=4, nb=[3 2 3], nc=2, and nk=[0 0 0]
m1 = armax(z8a,[4 3 2 3 2 0 0 0]);

% Refine the initial model m1 using the data set z8b,
% and stricter algorithm settings with increased number
% of maximum iterations (MaxIter) and smaller tolerance
m2 = pem(z8b,m1,'tol',1e-5,'maxiter',50);
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The next example demonstrates how to refine models for which you have
initial parameter guesses. In this case, you must first create a model object
using a constructor method and set the initial parameter values in the model
properties. Next, you provide this initial model as input to pem. This example
estimates an ARMAX model for the data and requires you to initialize the A,
B, and C polynomials. For more information about estimating polynomial
models, see “Black-Box Polynomial Models” on page 5-42.

load iddata8
% Define model parameters
A = [1 -1.2 0.7];
B(1,:) = [0 1 0.5 0.1]; % first input
B(2,:) = [0 1.5 -0.5 0]; % second input
B(3,:) = [0 -0.1 0.5 -0.1]; % third input
C = [1 0 0 0 0];
Ts = 1;
% Leading zeros in B matrix indicate input delay (nk),
% which is 1 for each input channel. The trailing zeros
% in B(2,:)) make the number of coefficients equal
% for all channels.

% Create model object
init_model = idpoly(A,B,C,'Ts',1);

% Use pem to refine initial model
model = pem(z8,init_model)

% Compare the two models
compare(z8,init_model,model)
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Introduction to the System Identification Tool
System Identification Tool is a graphical user interface (GUI) for working with
System Identification Toolbox. If you are new to this Toolbox, you can use
System Identification Tool to become familiar with the product features and
workflow. For tutorials on using the System Identification Tool, see Getting
Started with System Identification Toolbox. For more information about the
system identification workflow, see “Workflow in the System Identification
Tool” on page 2-13.

This section discusses the following topics:

• “Opening the System Identification Tool” on page 2-3

• “Overview of the System Identification Tool Window” on page 2-4

• “Accessing Windows in the System Identification Tool” on page 2-11

• “Getting Help” on page 2-11

• “Exiting the System Identification Tool” on page 2-12

To learn more about the difference between using the Toolbox GUI and
functions, see Getting Started with System Identification Toolbox.

Opening the System Identification Tool
To open System Identification Tool, type the following command at the
MATLAB prompt:

ident

For a description of this window, see “Overview of the System Identification
Tool Window” on page 2-4.
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You can also open a previously saved session using the following syntax:

ident(session,path)

In the preceding command, session is the file name of the session you want
to open, and path is the location of the session file. Session files have the
extension .sid. When the session file in on the matlabpath, you can omit the
path argument.

You can also start System Identification Tool from the MATLAB Command
Window by selecting Start > Toolboxes > System Identification > System
Identification Tool.

Overview of the System Identification Tool Window
The following figure shows the System Identification Tool window.
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The layout of the window organizes tasks and information from left to
right. This organization follows a typical workflow where you start in the
top-left corner by importing data into the System Identification Tool using
the Import data menu and end in the bottom-right corner by plotting your
model characteristics. For more information about System Identification Tool
workflow, see “Workflow in the System Identification Tool” on page 2-13.
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This section discusses the following areas of the System Identification Tool
window:

• “Data Board and Data Views” on page 2-6

• “Model Board and Model Views” on page 2-9

Data Board and Data Views
The Data Board, located below the Import data menu, contains rectangular
icons that represent the data you imported into the System Identification
Tool. You can also create new data sets by preprocessing existing data sets
using the commands in the Preprocess menu. For more information about
preprocessing data, see Chapter 4, “Plotting and Preprocessing Data”.

You can drag and drop data icons in the Data Board and into open dialog
boxes. To learn how to manage data sets in the System Identification Tool, see
“Managing Data Sets and Models” on page 2-21.

Tip When the Data Board is full, you can delete unnecessary data sets by
dragging them to the Trash. You can also open an additional Data Board
window by selecting Options > Extra model/data board in the System
Identification Tool window.
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Each data set has a unique color to help you distinguish it from the other
data sets. In addition, the background color of the rectangle is color coded
according to the data domain, as follows:

• White background represents time-domain data.

• Blue background represents frequency-domain data.

• Yellow background represents frequency-response data.
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Colors Representing Data Domains
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The Data Views area lets you create plots of data sets that are active in the
Data Board. An active data set has a thick line in the icon, and an inactive
data set has a thin line.

In the following figure, the Time plot check box is selected to create a time
plot of all active time-domain data sets. In this example, only data is active
and shows in the time plot. For more information on how to work with the
plot windows, see “Working with Plots” on page 2-29.
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Selected Plot Includes Only Active Data Sets

Tip To toggle between excluding and including data in a plot, click the data
icon in the Data Board. Clicking the data icon also updates any plots that are
currently open by adding or removing the corresponding data from the plot.
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Model Board and Model Views
The Model Board, located below the Import models menu, contains
rectangular icons that represent the models you estimated or imported into
the System Identification Tool. You can drag and drop model icons in the
Model Board and into open dialog boxes. To learn how to manage models in
the System Identification Tool, see “Managing Data Sets and Models” on
page 2-21.

Note When the Model Board is full, you can delete unnecessary models by
dragging them to the Trash. You can also open an additional Model Board
window by selecting Options > Extra model/data board in the System
Identification Tool window.
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The Model Views area lets you create plots of models that are active in the
Model Board. An active model has a thick line in the icon, while an inactive
model has a thin line. In the following figure, Model output is selected to plot
the output simulated by the active models. In this example, the plot contains
only arx441 and not n4s4 because only arx441 is active. For more information
on how to work with the plot windows, see “Working with Plots” on page 2-29.

'���(�������

)�����(�������

*��������������
��������������(�
������"

Selected Plot Includes Only Active Models

Tip To toggle between excluding and including a model in a plot, click the
model icon in the Model Board. Clicking the model icon also updates any
plots that are currently open by adding or removing the corresponding model
from the plot.
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Model Output of arx441 (Blue) and Validation Output (Black)

To close a plot, clear the corresponding check box in the System Identification
Tool.

Accessing Windows in the System Identification Tool
While you work with System Identification Tool, you might have several
dialog boxes open at the same time. To bring a specific window to the top,
select it by name from the Window menu.

Getting Help
System Identification Tool provides online help topics that you can access
from the Help menu. Furthermore, contextual help is available from each
dialog box by clicking the Help button.
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Exiting the System Identification Tool
To exit System Identification Tool, click Exit in the bottom-left corner of the
window. Alternatively, select File > Exit System Identification Tool.

For more information about managing your sessions, see “Managing the
System Identification Tool Sessions” on page 2-18.
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Workflow in the System Identification Tool
A typical workflow in the System Identification Tool consists of the following
tasks:

1 Import data from the MATLAB workspace. For more information, see
“Creating Data Sets in the System Identification Tool” on page 3-13.

2 Plot the data using Data Views. For more information, see “Plotting Data”
on page 4-7.

3 Preprocess the data using commands in the Preprocess menu. For
example, you can remove constant offsets or linear trends (for linear models
only), filter data, or select regions of interest. For more information, see
Chapter 4, “Plotting and Preprocessing Data”.

4 Select estimation and validation data. For more information, see
“Specifying Working Data and Validation Data” on page 2-23.

5 Estimate models using commands in the Estimate menu. For information
on estimating models, see the following topics:

• “Correlation Analysis Models” on page 5-23

• “Spectral Analysis Models” on page 5-31

• “Low-Order, Continuous-Time Process Models” on page 5-4

• “Black-Box Polynomial Models” on page 5-42

• “State-Space Models” on page 5-67

• “Time-Series Models” on page 5-94

• Chapter 6, “Estimating Nonlinear Black-Box Models”

6 Validate models using Models Views. For more information, see Chapter
9, “Plotting and Validating Models”.

7 Export models to the MATLAB workspace for further processing or for
using with other MathWorks products. For more information about
exporting models, see “Exporting to the MATLAB Workspace” on page 2-27.
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This sequence of tasks is iterative. If your model is not satisfactory, you can
try estimating using a different model structure.
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Customizing System Identification Tool
System Identification Tool lets you customize the default window behavior
and appearance in two ways.

You can configure the window during a session and then save the session
state. For example, you can set the size and position of specific dialog boxes
and modify the appearance of plots. Advanced users might choose to edit the
m-file that controls default settings, as described in “Modifying idlayout.m”
on page 2-16.

This section discusses the following topics:

• “Displaying Warnings While You Work” on page 2-15

• “Saving Session Preferences” on page 2-15

• “Modifying idlayout.m” on page 2-16

Displaying Warnings While You Work
In the System Identification Tool window, select Options > Warnings to
display informational dialog boxes while you work. Verify that a check mark
appears to the right of Warnings in the menu.

To stop warnings from being displayed during your session, select
Options > Warnings again to clear the check mark.

Saving Session Preferences
Use Options > Save preferences to save the current state of System
Identification Tool. This command saves the following settings to System
Identification Toolbox preferences file, idprefs.mat:

• Size and position of the System Identification Tool window.

• Sizes and positions of the dialog box.

• Four most-recently used sessions.

• Plot options, such as line styles, zoom, grid, and whether the input is
plotted using zero-order hold or first-order hold.
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Because idprefs.mat is a data file, you cannot edit it directly. The
idprefs.mat file is located in the same directory as startup.m, by default.
To change the location where your preferences are saved, use the midprefs
command with the new path as the argument.

For example:

midprefs('c:\matlab\toolbox\local\')

You can also type midprefs, and browse to the desired directory.

To restore the default preferences, select Options > Default preferences.

Modifying idlayout.m
Advanced users might want to customize the default plot options by editing
idlayout.m. Plot options you can customize are:

• Color order of data and model icons. You can later edit the color for a
specific data or model in the Data/model Info dialog box. You open this
dialog box by right-clicking the corresponding data or model icon in the
System Identification Tool window.

• Line colors on plots.

• Axis limits and tick marks.

• Plot options, set in the plot menus.

• Font sizes.

Editing idlayout.m lets you change more layout properties than those you
can set by saving preferences to idprefs.mat.

To customize idlayout.m defaults, save a copy of idlayout.m to a folder in
your matlabpath just above the ident directory level.

Caution Do not edit the original file to avoid overwriting the idlayout.m
defaults shipped with the product.
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Note When you save preferences using Options > Save preferences
to idprefs.mat, these preferences override the defaults in idlayout.m.
To give idlayout.m precedence every time you start a new session, select
Options > Default preferences.
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Managing the System Identification Tool Sessions
System identification is an iterative process that requires you to try different
model structures until you find one or more that give the best results. System
Identification Tool lets you save your progress, including the data sets and the
models, in a session.

You can open a saved session to continue working where you left off. You can
also use sessions to organize your work by grouping the models you estimated
using a specific approach.

Finally, you can save different stages of your progress as different sessions so
that you can revert to any stage simply by opening the corresponding session.

This section includes the following topics:

• “What Is a Session?” on page 2-18

• “Starting a New Session” on page 2-19

• “Commands for Managing Sessions” on page 2-19

What Is a Session?
A session is the data and models that are currently in the System
Identification Tool window. In a sense, a session is the progress of your system
identification problem.

If you opened additional data and model boards, using Options > Extra
model/data board, these additional windows are part of your current
session.

Sessions are saved as files with a .sid extension.

Note You can only open one session at a time.
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Starting a New Session
When you open System Identification Tool, you start a new session.

You can also start a new session by closing the current session using
File > Close session. The Toolbox prompts you to save your current session
if you have not yet saved it.

To delete a saved session, you must delete the session file from the folder
where it was saved.

Commands for Managing Sessions

Task Command Description

Close the
current
session and
start a new
session.

File > Close session You are prompted to save the
current session before closing
it.

Merge the
current
session with
a previously
saved session.

File > Merge session You must start a new session
and import data or models
before you can select to merge
it with a previously saved
session. You are prompted
to select the session file to
merge with the current. This
operation combines the data
and the models of both sessions
in the current session.

Open a saved
session.

File > Open session If you have data in the System
Identification Tool, you must
close the current session before
you can open a new one.
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Task Command Description

Save current
session.

File > Save Useful for saving the session
repeatedly after you have
already saved the session for
the first time.

Save current
session under
a new name.

File > Save As Useful when you want to save
your work incrementally. This
command lets you revert to a
previous stage, if necessary.
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Managing Data Sets and Models
While you use System Identification Tool, you might end up with numerous
data sets and models in the window. This section describes how to manage
your data and models in the GUI and perform the following tasks:

• “Adding Data Sets and Models” on page 2-21

• “Specifying Working Data and Validation Data” on page 2-23

• “Importing Models into the System Identification Tool” on page 2-24

• “Viewing Data and Model Properties” on page 2-25

• “Organizing Data and Model Icons” on page 2-26

• “Deleting Data and Models” on page 2-26

• “Exporting to the MATLAB Workspace” on page 2-27

For more information about the Data Board and Model Board in the System
Identification Tool window, see “Overview of the System Identification Tool
Window” on page 2-4.

Adding Data Sets and Models
There are three ways to add data to the System Identification Tool window:

• Import data into the current session. For more information about importing
data, see “Importing Data into the System Identification Tool” on page 3-13.

• Merge a saved session into the current session. For more information about
merging sessions, see “Commands for Managing Sessions” on page 2-19.

• Preprocess data.

When you detrend, transform, filter, or select a portion of a data set,
this action creates a new data set in the System Identification Tool. For
more information about preprocessing data, see Chapter 4, “Plotting and
Preprocessing Data”.

Similarly, you can add models using the following methods:

2-21



2 Working with the System Identification Tool GUI

• Import model into the current session. For more information about
importing models, see “Importing Models into the System Identification
Tool” on page 2-24.

• Merge a saved session into the current session. For more information about
merging sessions, see “Commands for Managing Sessions” on page 2-19.

• Estimate models from the data. For information on estimating linear
models, see Chapter 5, “Estimating Linear Nonparametric and Parametric
Models”. For information on nonlinear models, see Chapter 6, “Estimating
Nonlinear Black-Box Models”.

You can only display eight data sets and sixteen models to the System
Identification Tool window, as shown in the following figure. When you import
or create more data sets or estimate more models, an additional window
automatically opens.

You can type comments in the Notes field, shown in the top portion of the
window, to describe the data and models.

When you save a session, as described in “Commands for Managing Sessions”
on page 2-19, all additional windows and notes are also saved.
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Specifying Working Data and Validation Data
Working data is the data on which you perform preprocessing and estimation
operations. When you select commands from the Preprocess and Estimate
menus, these operations are applied to the working data.

Validation data is used to validate a model by comparing it to the model output
and perform residual tests. When you plot the model output and residuals,
the input to the model is the input signal from the validation data set. These
plots compare model output to the measured output in the validation data set.

When you initially import data into the System Identification Tool, as
described in “Creating Data Sets in the System Identification Tool” on page
3-13, this data set is automatically designated as both Working Data and
Validation Data.

To specify working data, drag and drop a data set from the Data Board into
the Working Data rectangle, as shown in the following figure.

Similarly, to specify validation data, drag and drop a data set from the Data
Board into the Validation Data rectangle.
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Tip The data you use to validate a model should differ from the data you
use to estimate a model. For more information about validating models, see
Chapter 9, “Plotting and Validating Models”.

Importing Models into the System Identification Tool
You can import System Identification Toolbox model objects from the
MATLAB workspace into the System Identification Tool GUI. If you have
Control System Toolbox, you can also import LTI objects defined using Control
System Toolbox.

The following procedure describes how to import models into the System
Identification Tool. It assumes that you begin with the System Identification
Tool window already open. If this window is not open, type the following
command at the MATLAB prompt:

ident

1 In the System Identification Tool window, select Import from the Import
models list to open the Import Model Object dialog box.

2 In the Enter the name field, type the name of a model object in the
MATLAB workspace. Press Enter.

3 (Optional) In the Notes field, type any notes you want to store with this
model.

4 Click Import to add the model to the Model Board in the System
Identification Tool window.

5 To close the Import Model Object window, click Close.
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Viewing Data and Model Properties
You can get information about each data set in the System Identification Tool
by right-clicking (or double-clicking) the data icon in the System Identification
Tool window.

The Data/model Info dialog box opens. This dialog box describes the contents
and the properties of the data or model. It also displays any notes associated
with the data or model, including the command-line equivalent of the
operations you used to create this data or model.

Tip To view or modify properties for several data sets or models, keep this
window open and right-click each data set in the System Identification Tool
window. The Data/model Info dialog box updates as you select each data set.
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In the Data/model Info dialog box, you can rename the data and models. To
rename data, enter a new name in the Data name field. To rename models,
enter a new name in the Model name field.

You can also specify a new display color using three RGB values in the Color
field.

Clicking Present displays the basic characteristics of this data object in the
MATLAB Command Window.

Organizing Data and Model Icons
You can rearrange data or model icons in the System Identification Tool
window by dragging and dropping them to an empty rectangle in the Data
Board or Model Board, respectively.

If you need additional space for your data and models, select Options > Extra
model/data board to open an additional window. For more information, see
“Adding Data Sets and Models” on page 2-21.

Note You cannot drag and drop a data icon into the Model Board or a model
icon into the Data Board.

Deleting Data and Models
To delete data and models in the System Identification Tool window, drag and
drop them into Trash. Moving items to Trash does not permanently delete
these items.

Note You cannot delete a data set that is currently designated as Working
Data or Validation Data. You must specify a different data set in the
System Identification Tool window to be Working Data or Validation Data,
as described in “Specifying Working Data and Validation Data” on page 2-23.
Then, you can delete the unwanted data.
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To restore a data set or a model from Trash, drag its icon from Trash to the
Data or Model Board in System Identification Toolbox window. You can view
the discarded contents in the Trash window by double-clicking the Trash
icon, as shown in the following figure.

Note You must restore data to the Data Board; you cannot drag data icons to
the Model Board. Similarly, you must restore a model to the Model Board in
System Identification Toolbox window.

To permanently delete all data sets and models in Trash, select
Options > Empty trash.

Exiting a session empties Trash automatically.

Exporting to the MATLAB Workspace
The data and models you create in the System Identification Tool are not
available in the MATLAB workspace until you export them. Exporting to
MATLAB is necessary when you need to perform an operation on the data
or model that is only available using command-line syntax. You might also
want to export your model to Simulink® or another Toolbox, such as Control
System Toolbox.

2-27



2 Working with the System Identification Tool GUI

To export a data set or model to the MATLAB workspace, drag and drop
the corresponding icon to the To Workspace rectangle. For example, the
following figure shows how to export the time-domain data object data to the
MATLAB workspace.

Exporting Data to the MATLAB Workspace

The MATLAB workspace now contains a variable named data, which is an
iddata object.

When you export data and model to the MATLAB workspace, the resulting
MATLAB variables have the same name as in the System Identification Tool.
Exported frequency-response data is an idfrd data object. Exported models
are model objects. For more information about model objects and how to work
with them, see “Working with Model Objects” on page 1-19.
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Working with Plots
System Identification Toolbox lets you plot data sets and models while you
work in the System Identification Tool. This section describes how to create
plots in the System Identification Tool window and describes the plot options
that are common to all plot types.

To get more information about a specific plot, select a help topic from the
Help menu in the plot window.

This section discusses the following topics:

• “How to Create a Plot” on page 2-29

• “Identifying Data Sets and Models on Plots” on page 2-30

• “Changing and Restoring Default Axis Limits” on page 2-31

• “Selecting Measured and Noise Channels in Plots” on page 2-33

• “Grid, Line Styles, and Redrawing Plots” on page 2-34

• “Opening a Plot in a MATLAB Figure Window” on page 2-35

• “Printing Plots” on page 2-35

How to Create a Plot
To create one or more plots, select the corresponding check box in the Data
Views area or the Model Views area of the System Identification Tool
window. An active data or model icon has a thick line in the icon, while an
inactive data set has a thin line.

Only active data sets and models appear on the selected plots. To toggle
including and excluding data or models on a plot, click the corresponding icon
in the System Identification Tool window.
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Identifying Data Sets and Models on Plots
You can identify data sets and models on plot by their color: the color of
the line in the data or model icon in the System Identification Tool window
matches the line color on the plots. You can also display data tips for each
line on the plot.

How you display the data tip depends on whether the zoom feature is enabled:

• When zoom in enabled, press and hold down Shift, and click the desired
curve to display a data tip on a plot.

• When zoom is disabled, click on a plot curve and hold down the mouse
button to display the data tip.

For more information about enabling zoom, see “Using the Zoom Feature”
on page 2-31.
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The following figure shows an example of a data tip, which contains the name
of the data set and the coordinates of the point on the curve you click.

Data Tip on a Plot

Changing and Restoring Default Axis Limits
There are two ways to change the portion of the plot currently in view. This
section describes how to change plot axis limits and contains the following
topics:

• “Using the Zoom Feature” on page 2-31

• “Setting Axis Limits” on page 2-32

Using the Zoom Feature
Enable the zoom feature by selecting Style > Zoom in the plot window. To
disable zoom, select Style > Zoom again.
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Tip To verify that this feature is enabled, click the Style menu to open it. A
check mark should appear next to Zoom.

You can adjust zoom in the following ways:

• To zoom in default increments, left-click on the portion of the plot you want
to center in the plot window.

• To zoom in a specific region, click and drag a rectangle that identifies the
region for magnification. When you release the mouse button, the selected
region is displayed.

• To zoom out, right-click on the plot.

Note To restore the full range of the data in view, select
Options > Autorange in the plot window.

Setting Axis Limits
You can change axis limits for the vertical and the horizontal axes of the input
and output channels that are currently displayed on the plot.

1 Select Options > Set axes limits to open the Limits dialog box.

2 Specify a new range for each axis by editing its lower and upper limits.
The limits must be entered using the following format: [LowerLimit
UpperLimit]. Click Apply.

Example: [0.1 100]

Note To restore full axis limits, select the Auto check box to the right
of the axis name, and click Apply.

3 To plot data on a linear scale, clear the Log check box to the right of the
axis name, and click Apply.
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Note To revert to base-10 logarithmic scale, select the Log check box to
the right of the axis name, and click Apply.

4 Click Close.

Note To restore the full range of the data in view, select
Options > Autorange in the plot window.

Selecting Measured and Noise Channels in Plots
Input and output variables are called channels. When you create a plot of a
multivariate input or output data set or model, it only shows one input/output
channel pair. The selected channel names are displayed in the title bar of
the plot window.

Select a different input/output channel pair from the Channel menu in the
plot window.

Note When you select to plot multiple data sets, and each data set contains
several input and output channels, the Channel menu lists channel pairs
from all data sets.

The Channel menu uses the following notation to list channels: u1->y2
means that the transfer function from input channel u1 to output channel
y2 is displayed.

The symbol e represents a noise source and might appear as e@y3->y1, which
means that the transfer function from the noise channel (associated with y3)
to output channel y2 is displayed. System identification estimates as many
noise sources as there are output channels. In general, e@ynam indicates that
the noise source (innovation) corresponds to the output with name ynam. For
more information about noise channels, see “Subreferencing Measured and
Noise Models” on page 1-38.
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Tip When you import data into the System Identification Tool, it is helpful to
assign meaningful channel names in the Import Data dialog box. For more
information about importing data, see “Creating Data Sets in the System
Identification Tool” on page 3-13.

Grid, Line Styles, and Redrawing Plots
Although different plot types contain different options in the Style menu that
are specific to each plot type, there are several Style options that are common
to all plot types. These include the following:

• “Grid Lines” on page 2-34

• “Solid or Dashed Lines” on page 2-34

• “Plot Redrawing” on page 2-34

Grid Lines
To toggle showing or hiding grid lines, select Style > Grid.

Solid or Dashed Lines
Select Style > Separate linestyles to display currently-visible lines as a
combination of solid, dashed, dotted, and dash-dotted line styles.

Select Style > All Solid Lines to display all solid lines. This choice is the
default.

All line styles retain the color of their corresponding data or model icon in the
System Identification Tool window.

Plot Redrawing
To avoid redrawing the entire plot when you add another data set or model to
the plot, select Style > Erasemode xor. Although this selection results in
faster response, it might also produce poor plot quality.
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To specify that the plot be redrawn when you add another data set or model
to the plot, select Style > Erasemode normal. This choice is the default
setting.

Opening a Plot in a MATLAB Figure Window
The MATLAB Figure window contains general plot editing and printing
controls that are not available in the System Identification Toolbox plot
window. Sometimes it is useful to create a plot in the System Identification
Tool, and then open it in a MATLAB Figure window for fine-tuning its
appearance.

After you create the plot, as described in “How to Create a Plot” on page 2-29,
select File > Copy figure in the plot window. This command opens the
plot in a MATLAB Figure window, but also leaves the System Identification
Toolbox plot window open.

Printing Plots
To print a System Identification Toolbox plot to a printer, select File > Print
in the plot window. In the Print dialog box, select the printing options and
click OK.

2-35



2 Working with the System Identification Tool GUI

2-36



3

Representing Data for
System Identification

Introduction to Representing Data
(p. 3-3)

Overview of representing data in
System Identification Toolbox using
iddata and idfrd data objects.

Data Requirements (p. 3-5) Requirements on MATLAB
variables that you represent as
time-domain, frequency-domain, and
frequency-response data in System
Identification Toolbox.

Creating Data Sets in the System
Identification Tool (p. 3-13)

Importing data from the MATLAB
workspace into the System
Identification Tool, creating new
data sets by segmenting and
combining data sets, renaming data
sets, and changing the color of data
icons.

Creating iddata Objects (p. 3-31) Using the iddata constructor
to represent time-domain and
frequency-domain data and working
with iddata objects.

Creating idfrd Objects (p. 3-51) Using the idfrd constructor to
represent frequency-response data
and working with idfrd objects.
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Transforming Between Time- and
Frequency-Domain Data (p. 3-59)

Transforming between time-domain,
frequency domain, and
frequency-response data.

Creating Data Using Simulation
(p. 3-71)

Creating input data with specific
characteristics and simulating the
output data using a model.
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Introduction to Representing Data
Before you can estimate models in System Identification Toolbox, you need to
import your data into the MATLAB workspace. You can import the data from
external data files, create data by simulation, or manually create data arrays
in the MATLAB Command Window. For more information about requirements
on MATLAB variables, see “Data Requirements” on page 3-5. To learn how to
create data by simulation, see “Creating Data Using Simulation” on page 3-71.

After your data is in the MATLAB workspace, you must represent your data
in System Identification Toolbox format. If you prefer using the graphical
user interface (GUI) environment, import data from the MATLAB workspace
into the System Identification Tool (see “Creating Data Sets in the System
Identification Tool” on page 3-13).

If you primarily work in the MATLAB Command Window, then represent the
data using custom data structures, called data objects, to encapsulate the data
values and properties. Data objects provide the convenience of manipulating
data and its properties as a single entity.

System Identification Toolbox provides the following two types of data objects:

• iddata — For time-domain or frequency-domain data (see “Creating iddata
Objects” on page 3-31).

• idfrd — For frequency-response data (see “Creating idfrd Objects” on
page 3-51).

Note Importing data into the System Identification Tool creates the
corresponding data objects in the background.

System Identification Toolbox supports the following types of data:

• Time-domain data.

• Frequency-domain data, which is a Fourier transform of time-domain
signals.
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• Frequency-response data, which can be measured using a spectrum
analyzer.

You can use System Identification Toolbox to process and model single-variable
and multivariable data, as follows:

• Single-input and single-output (SISO) systems.

• Multiple-input and single-output (MISO) systems.

• Single-input and multiple-output (SIMO) systems.

• Multiple-input and multiple-output (MIMO) systems.

• Time-series data that has no inputs and one or more outputs.

When several time-domain or frequency-domain data sets are measured
for a dynamic system, you might choose to combine these data sets into
one iddata object and create one multiexperiment data set. Estimating
models for multiexperiment data produces an average model. To learn how
to do such estimates in the System Identification Tool, see “Working with
Multiexperiment Data” on page 3-21. To learn how to create multiexperiment
data using functions, see “Creating Multiexperiment Data Sets” on page 3-37.

3-4



Data Requirements

Data Requirements
This section describes what you need to know before representing
time-domain, frequency-domain, and frequency-response data in System
Identification Toolbox format and contains the following topics:

• “Importing Data into MATLAB” on page 3-5

• “Requirements for Time-Domain Data” on page 3-6

• “Requirements for Time-Series Data” on page 3-7

• “Requirements for Frequency-Domain Data” on page 3-7

• “Requirements for Frequency-Response Data” on page 3-9

The sampling interval is the time between successive data samples. System
Identification Toolbox interface provides limited support for nonuniformly
sampled data. For more information about specifying uniform and nonuniform
time vectors, see “Constructing iddata for Time-Domain Data” on page 3-32.

Note The System Identification Tool GUI only supports uniformly sampled
data.

After verifying that your data meets the requirements described in this
section, you can import data into the System Identification Tool. For more
information, see “Creating Data Sets in the System Identification Tool” on
page 3-13.

If you primarily work in the MATLAB Command Window, see “Creating
iddata Objects” on page 3-31 (for time-domain and frequency-domain data) or
“Creating idfrd Objects” on page 3-51 (for frequency-response data).

Importing Data into MATLAB
If you are modeling data from an external data file, you must import this data
into the MATLAB workspace. The MATLAB Programming documentation
provides information about supported data formats and import functions.
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The simplest way to import data into MATLAB is to use the MATLAB Import
Wizard, which supports the following types of data formats:

• MAT-files containing MATLAB arrays or System Identification Toolbox
iddata and idfrd data structures

• Text files, such as .txt and .dat

• Spreadsheet files, such as .xls

• Graphics files, such as .gif and .jpg

• Audio and video files, such as .avi and .wav

For information about using the MATLAB Import Wizard, see the MATLAB
Programming documentation.

Requirements for Time-Domain Data
Time-domain data consists of one or more input variables u(t) and one or more
output variables y(t), sampled as a function of time. If there is no output data,
see “Requirements for Time-Series Data” on page 3-7.

The following variables must exist in the MATLAB workspace before you can
represent time-domain data in System Identification Toolbox:

• Input data.

For single-input and single-output (SISO) data, the input must be a
columnwise vector.

For a data set with Nu inputs and NT samples (measurements), the input is
an NT-by-Nu matrix.

• Output data.

For single-input and single-output (SISO) data, the output must be a
columnwise vector.

For a data set with Ny outputs and NT samples (measurements), the output
is an NT-by-Ny matrix.

• Sampling time interval.
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If you are working with uniformly-sampled data, use the actual sampling
interval n your experiment. Each data value is assigned a sample time,
which is calculated from the start time and the sampling interval. If
you are working with nonuniformly sampled data in the MATLAB
Command Window, you can specify a vector of time instants using the
iddata TimeInstants property, as described in “Constructing iddata for
Time-Domain Data” on page 3-32.

Requirements for Time-Series Data
A special case of time-domain data is time-series data, which consist of one
or more outputs y(t) with no corresponding input.

The following variables must exist in the MATLAB workspace before you can
represent time-series data in System Identification Toolbox:

• Output data.

- For single-input and single-output (SISO) data, the output must be a
columnwise vector.

- For a data set with Ny outputs and NT samples (measurements), the
output is an NT-by-Ny matrix.

• Sampling time interval.

- If you are working with uniformly-sampled data, use the actual sampling
interval in your experiment. Each data value is assigned a sample
time, which is calculated from the start time and the sampling interval.
If you are working with nonuniformly sampled data in the MATLAB
Command Window, you can specify a vector of time instants using the
iddata TimeInstants property, as described in “Constructing iddata for
Time-Domain Data” on page 3-32.

For information on estimating time-series models, see “Time-Series Models”
on page 5-94.

Requirements for Frequency-Domain Data
This section defines continuous and discrete Fourier transforms, and specifies
the required MATLAB variables and their dimensions for representing
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frequency-domain data in System Identification Toolbox. It discusses the
following topics:

• “About Frequency-Domain Data” on page 3-8

• “Representing Frequency-Domain Data” on page 3-9

About Frequency-Domain Data
Frequency-domain data is the Fourier transform of the input and output
time-domain signals. For continuous-time signals, the Fourier Transform over
the entire time axis is defined as follows:
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In the context of numerical computations, continuous equations must be
replaced by their discretized equivalents to handle discrete data values. For
a discrete-time system with a sampling interval T, the frequency-domain
output Y(eiw) and input U(eiw) is the Time-Discrete Fourier Transform (TDFT):
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In this example, k = 1,2,...,N, where N is the number of samples in the
sequence.

Note This form only discretizes the time. The frequency is continuous.

3-8



Data Requirements

When the frequencies are not equally spaced, it is useful to also discretize
the frequencies in the Fourier transform. The resulting Discrete-Fourier
Transform (DFT) of time-domain data is:
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The DFT is useful because it can be calculated very efficiently using the Fast
Fourier Transform (FFT) method. Fourier transforms of the input and output
data are complex values.

Representing Frequency-Domain Data
The following variables must exist in the MATLAB workspace before you can
represent frequency-domain data in System Identification Toolbox:

• Input data.

- For single-input and single-output (SISO) data, the input must be a
columnwise vector.

- For a data set with Nu inputs and Nf frequencies, the input is an Nf-by-Nu
matrix.

• Output data.

- For single-input and single-output (SISO) data, the output must be a
columnwise vector.

- For a data set with Ny outputs and Nf frequencies, the output is an
Nf-by-Ny matrix.

• Frequency values.

Must be a columnwise vector.

Requirements for Frequency-Response Data
Before you can represent frequency-response data in the System Identification
Toolbox format, this data must exist in the MATLAB workspace.
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This section discusses the following topics:

• “About Frequency-Response Data” on page 3-10

• “Representing Frequency-Response Data” on page 3-11

About Frequency-Response Data
Frequency-response data, also called frequency-function data, consists of
complex frequency-response values for a linear system characterized by
its transfer function G. You can measure frequency-response data values
directly using a spectrum analyzer, for example, which provides a compact
representation of the input and the output (compared to storing input and
output independently).

The transfer function G is essentially an operator that takes the input u of a
linear system to the output y:

y Gu=

For a continuous-time system, the transfer function relates the Laplace
transforms of the input U(s) and output Y(s):

Y s G s U s( ) ( ) ( )=

In this case, the frequency function G(iw) is the transfer function evaluated
on the imaginary axis s=iw.

For a discrete-time system sampled with a time interval T, the transfer
function relates the Z-transforms of the input U(z) and output Y(z):

Y z G z U z( ) ( ) ( )=

In this case, the frequency function G(eiwT) is the transfer function G(z)
evaluated on the unit circle. The argument of the frequency function G(eiwT)
is scaled by the sampling interval T to make the frequency function periodic

with the sampling frequency 2π
T .
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For a sinusoidal input to the system, the output is also a sinusoid with the
same frequency. The frequency-response data magnifies the amplitude of

the input by G and shifts its phase by ϕ = arg G . Because the frequency
function is evaluated at the sinusoid frequency, the values of the frequency
function at a specific frequency describe the response of the linear system to
an input at that frequency.

Frequency-response data represents a (nonparametric) model of the
relationship between the input and the outputs as a function of frequency.
You might use such a model, which consists of a table of values, to study
the system frequency response. However, you cannot use this model for
simulation and prediction and must create a parametric model from the
frequency-response data.

Representing Frequency-Response Data
There are two ways to represent frequency-response data in System
Identification Toolbox. The first approach lets you manipulate the data using
both System Identification Tool and System Identification Toolbox functions
in the MATLAB Command Window, and the second approach is only used for
working with data in the System Identification Tool.

The following variables must exist in the MATLAB workspace before you can
represent frequency-response data in System Identification Toolbox:

• In System Identification Tool or MATLAB Command Window, represent
complex-valued G(eiw)

For single-input single-output (SISO) systems, the frequency function is
a columnwise vector.

For a data set with Nu inputs, Ny outputs, and Nf frequencies, the frequency
function is an Ny-by-Nu-by-Nf array.

• In System Identification Tool only, represent amplitude G and phase

shift ϕ = arg G

For single-input single-output (SISO) systems, the amplitude and the phase
must each be a columnwise vector.
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For a data set with Nu inputs, Ny outputs, and Nf frequencies, the amplitude
and the phase must each be an Ny-by-Nu-by-Nf array.

• Frequency values must be a columnwise vector.
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Creating Data Sets in the System Identification Tool
There are several ways to create new data sets in the System Identification
Tool. For example, you can import data into the System Identification
Tool window and combine selected subsets of input and output channels
to create a new data set. You can also merge several data sets into a
single multiexperiment data set, or extract selected experiments from a
multiexperiment data set into a single data set.

Note Data preprocessing operations also create new data sets. See Chapter
4, “Plotting and Preprocessing Data”.

This section discusses the following topics:

• “Importing Data into the System Identification Tool” on page 3-13

• “Specifying the Sampling Interval” on page 3-18

• “Creating Data Sets from Selected Channels” on page 3-19

• “Working with Multiexperiment Data” on page 3-21

• “Renaming Data and Changing Its Display Color” on page 3-29

For information about working with System Identification Tool, see Chapter
2, “Working with the System Identification Tool GUI”.

Importing Data into the System Identification Tool
To open the GUI, type the following command at the MATLAB prompt:

ident
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3 Representing Data for System Identification

In the Import data list, select the type of data to import from the MATLAB
workspace, as shown in the following figure.

Note Your data must be sampled at equal time intervals.

The following table summarizes the commands for importing different types
of data into the System Identification Tool. Each command opens the Import
Data dialog box. For detailed information about the fields in the Import Data
dialog box, click Help.

This table also specifies which MATLAB variables that must be present in the
MATLAB workspace. For information about the dimensions of the required
MATLAB variables, see “Data Requirements” on page 3-5.
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For an example of importing data into the System Identification Tool, see the
Getting Started guide.

Commands for Importing Data

Type of Data Import Command Required
Information

Time-domain data
sampled as a function
of time.

Select Import
data > Time domain
data to open the Import
Data dialog box.

Time-Domain
Signals is already
selected in the Data
Format for Signals
list.

Specify the following to
store data as an iddata
object:

• Input signal
as MATLAB
vector, matrix, or
expression.

• Output signal
as MATLAB
vector, matrix, or
expression.

• Sampling time
interval. See
“Specifying the
Sampling Interval”
on page 3-18.

Note For time series,
only import the output
signal and enter [] for
the input.
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Commands for Importing Data (Continued)

Type of Data Import Command Required
Information

Frequency-domain
data consists of
Fourier transforms
of time-domain data (a
function of frequency).

Select Import
data > Freq. domain
data to open the Import
Data dialog box.

Frequency Domain
Signals is already
selected in the Data
Format for Signals
list.

Specify the following
to store as an iddata
object:

• Input signal
as MATLAB
vector, matrix, or
expression.

• Output signal
as MATLAB
vector, matrix, or
expression.

• Frequency vector or
MATLAB expression.

• Sampling time
interval. See
“Specifying the
Sampling Interval”
on page 3-18.
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Commands for Importing Data (Continued)

Type of Data Import Command Required
Information

Frequency-response
data consists of
complex-valued
frequency responses
at specified frequencies.

Select Import
data > Freq. domain
data to open the Import
Data dialog box.

In the Data Format
for Signals list, select
Freq. Function
(complex).

Specify the following to
store data as an idfrd
object:

• MATLAB variable
or expression
representing
the complex
frequency-response
data G(eiw).

• Frequency
MATLAB variable
or expression
representing a vector
of frequency values.

Frequency-response
data consists of
frequency-response
amplitude and phase
values at specified
frequencies.

Select Import
data > Freq. domain
data to open the Import
Data dialog box.

In the Data Format
for Signals list, select
Freq. Function
(Amp/Phase).

Specify the following to
store data as an idfrd
object:

• Amplitude variable
or MATLAB
expression

representing G .

• Phase variable or
MATLAB expression
representing

ϕ = arg G .

• Frequency variable
or MATLAB
expression
representing a vector
of frequency values.
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Commands for Importing Data (Continued)

Type of Data Import Command Required
Information

System Identification
Toolbox data object
(iddata, idfrd) or
Control System Toolbox
frd object.

Select Import
data > Data object
to open the Import Data
dialog box.

IDDATA or
IDFRD/FRD is already
selected in the Data
Format for Signals
list.

Import iddata, idfrd,
or frd data object in the
MATLAB workspace.

Note Importing
an frd object from
Control System Toolbox
converts it to an idfrd
object.

Example data from
dryer2.mat, consisting
of 1000 single-input and
single output (SISO)
power and temperature
values, respectively.

Select Import
data > Example
to open the Import
Data dialog box with
the sample data
information already
entered in the dialog
box.

Import sample data
and store as an iddata
object.

Specifying the Sampling Interval
When you specify the input and output data in the Import Data dialog box,
you must also enter the sampling interval in the units of your experiment.
The sampling interval is the time between successive data samples in your
experiment and must be the actual time interval at which your data is
sampled in any units. For example, enter 0.5 if your data was sampled every
0.5 ms, and enter 1 is your data was sampled every 1 s.

You can also use the sampling interval as a flag to specify continuous-time
data. When importing continuous-time frequency domain or
frequency-response data, set the Sampling interval to 0.
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The sampling interval is used during model estimation. For time-domain
data, the sampling interval is used together with the start time to calculate
the sampling time instants. When you transform time-domain signals to
frequency-domain signals (see fft), the Fourier transforms are computed as
Discrete Fourier Transforms (DFT) for this sampling interval. In addition,
the sampling instants are used to set the horizontal axis on time plots.

Sampling Interval in the Import Data Dialog Box

Creating Data Sets from Selected Channels
You can create a new data set in the System Identification Tool by extracting
subsets of input and output channels from an existing data set.

To create a new data set from selected channels:

1 In the System Identification Tool window, drag the icon of the data from
which you want to select channels to the Working Data rectangle.
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2 Select Preprocess > Select channels to open the Select Channels dialog
box.

The Inputs list displays the input channels and the Outputs list displays
the output channels in the selected data set.

3 In the Inputs list, select one or more channels in any of following ways:

• Select one channel by clicking its name.

• Select adjacent channels by pressing the Shift key while clicking the
first and last channel names.

• Select nonadjacent channels by pressing the Ctrl key while clicking
each channel name.

Tip To exclude input channels and create time-series data, clear all
selections by holding down the Ctrl key and clicking each selection. To
reset selections, click Revert.
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4 In the Outputs list, select one or more channels in any of following ways:

• Select one channel by clicking its name.

• Select adjacent channels by pressing the Shift key while clicking the
first and last channel names.

• Select nonadjacent channels by pressing the Ctrl key while clicking
each channel name.

Tip To reset selections, click Revert.

5 In the Data name field, type the name of the new data set. Use a name
that is unique in the Data Board.

6 Click Insert to add the new data set to the Data Board in the System
Identification Tool window.

7 Click Close.

Working with Multiexperiment Data
You can create a time-domain or frequency-domain data set in the System
Identification Tool that consists of several experiments. Experiments can
mean data that was collected during different sessions, or portions of the
data collected during a single session. In the latter situation, you can create
multiexperiment data by splitting a single data set into multiple segments
that exclude corrupt data, and then merge the data segments. Identifying
models for multiexperiment data results in an average model.

You can only merge data sets that have all of the following characteristics:

• Same number of input and output channels.

• Different names. The name of each data set becomes the experiment name
in the merged data set.

• Same input and output channel names.

• Same type (that is, time-domain data or frequency-domain data only).
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This section discusses the following topics:

• “Merging Data Sets” on page 3-22

• “Extracting Experiments into a New Data Set” on page 3-26

Merging Data Sets
This section describes how to merge data sets in the System Identification
Tool.

Note Before merging several segments of the same data set, verify that
the time vector of each data starts at the time when that data segment was
actually measured (relative to the other data sets).
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For example, suppose that you want to combine the data sets tdata, tdata2,
tdata3, tdata4 shown in the following figure.

GUI Contains Four Data Sets to Merge

The following procedure describes how to merge data sets.
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1 In the Operations area, select Preprocess > Merge experiments from
the drop-down menu to open the Merge Experiments dialog box.
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2 Drag a data set from the Data Board in System Identification Toolbox
window to the Merge Experiments dialog box, into the drop them here to
be merged rectangle.

The name of the data set is added to the List of sets.

tdata and tdata2 to Be Merged

Tip To empty the list, click Revert.

3 Repeat step 2 for each data set you want to merge. Go to the next step
after adding data sets.

4 In the Data name field, type the name of the new data set. This name
must be unique in the Data Board.
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5 Click Insert to add the new data set to the Data Board in the System
Identification Tool window.

Data Board Now Contains tdatam with Merged Experiments

6 Click Close to close the Merge Experiments dialog box.

Tip To get information about the state of creation of any data set in the
System Identification Tool, right-click the data icon to open the Data/model
Info dialog box.

Extracting Experiments into a New Data Set
When a data set already consists of several experiments, you can extract
one or more of these experiments into a new data set, using the System
Identification Tool.

For example, suppose that tdatam consists of four experiments. To create a
new data set that includes only the first and third experiments in this data
set, perform the following procedure:
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1 In the System Identification Tool window, drag and drop the tdatam data
icon to the Working Data rectangle.

tdatam Is Set to Working Data

2 In the Operations area, select Preprocess > Select experiments from
the drop-down menu to open the Select Experiments dialog box.
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3 In the Experiments list, select one or more data sets in one of the
following ways:

• Select one data set by clicking its name.

• Select adjacent data sets by pressing the Shift key while clicking the
first and last names.

• Select nonadjacent data sets by pressing the Ctrl key while clicking
each name.

4 In the Data name field, type the name of the new data set. This name
must be unique in the Data Board.

5 Click Insert to add the new data set to the Data Board in the System
Identification Tool window.

6 Click Close to close the Select Experiments dialog box.
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Renaming Data and Changing Its Display Color
You can rename data and change its display color by double-clicking the data
icon in the System Identification Tool window.

The Data/model Info dialog box opens. This dialog box describes both the
contents and the properties of the data. The object description area displays
the syntax of the operations you used to create the data in the GUI.

The Data/model Info dialog box also lets you rename the data by entering a
new name in the Data name field.

You can also specify a new display color using three RGB values in the Color
field. Each value is between 0 to 1 and indicates the relative presence of red,
green, and blue, respectively. For more information about specifying default
data color, see “Customizing System Identification Tool” on page 2-15.

Tip As an alternative to using three RGB values, you can enter any one of
the following letters in single quotes:

'y' 'r' 'b' 'c' 'g' 'm' 'k'

These strings represent yellow, red, blue, cyan, green, magenta, and black,
respectively.

3-29



3 Representing Data for System Identification

�������+���
�����������


���������
�����!�����
������������
��+���"

Information About the Data

Finally, you can enter comments about the origin and state of the data in
the Diary And Notes area. For example, you might want to include the
experiment name, date, and the description of experimental conditions.
When you estimate models from this data, these notes are associated with
the models.

Clicking Present display the portions of this information in the MATLAB
Command Window.
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Creating iddata Objects
This section describes how to represent the values and properties of time- and
frequency-domain data using iddata objects.

To represent data in the System Identification Tool GUI instead, see
“Creating Data Sets in the System Identification Tool” on page 3-13. For
more information about working with frequency-response data, see “Creating
idfrd Objects” on page 3-51.

This section discusses the following topics:

• “iddata Constructor” on page 3-31

• “iddata Properties” on page 3-34

• “Creating Multiexperiment Data Sets” on page 3-37

• “Subreferencing iddata Objects” on page 3-39

• “Modifying Time and Frequency Vectors” on page 3-43

• “Naming, Adding, and Removing Input and Output Channels” on page 3-47

• “Concatenating iddata Objects” on page 3-49

iddata Constructor
The iddata object represents time-domain or frequency-domain data. To
construct an iddata object, you must have the input and output data variables
already in the MATLAB workspace. Before you begin, check the requirements
on data dimensions in “Data Requirements” on page 3-5.

For details on how to construct iddata objects, see the following topics:

• “Constructing iddata for Time-Domain Data” on page 3-32

• “Constructing iddata for Frequency-Domain Data” on page 3-33

Note You can create multiexperiment iddata objects by combining existing
iddata objects. For more information, see “Creating Multiexperiment Data
Sets” on page 3-37.
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Constructing iddata for Time-Domain Data
Use the following syntax to create a time-domain object data:

data = iddata(y,u,Ts)

You can specify additional properties when you create the iddata object using
the constructor syntax:

data = iddata(y,u,Ts,'Property1',Value1,...,'PropertyN',ValueN)

For more information about accessing object properties, see “iddata
Properties” on page 3-34.

In this example, Ts is the sampling time, or the time interval, between
successive data samples. For uniformly sampled data, Ts is a scalar value
equal to the sampling interval of your experiment. The default time unit is
seconds, but you can specify any unit string using the TimeUnit property.
For more information about iddata time properties, see “Modifying Time
and Frequency Vectors” on page 3-43.

For nonuniformly-sampled data, specify Ts as [], and set the value of the
SamplingInstants property as a column vector containing individual time
values. For example:

data = iddata(y,u,Ts,[],'SamplingInstants',TimeVector)

Where TimeVector represents a vector of time values.

Note You can modify the property SamplingInstants by setting it to a new
vector with the length equal to the number of data samples.

To represent time-series data, use the following syntax:

ts_data = iddata(y,[],Ts)

where y is the output data, [] indicates empty input data, and Ts is the
sampling interval.
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The following example shows how to create an iddata object using
single-input and single-output (SISO) data from dryer2.mat. The input and
output each contain 1000 samples with the sampling interval of 0.08 second.

load dryer2 % Load input u2 and output y2
data = iddata(y2,u2,0.08) % Create iddata object

MATLAB returns the following output:

Time domain data set with 1000 samples.
Sampling interval: 0.08

Outputs Unit (if specified)
y1

Inputs Unit (if specified)
u1

The default channel name 'y1' is assigned to the first and only output
channel. When y2 contains several channels, the channels are assigned
default names 'y1','y2','y2',...,'yn'. Similarly, the default channel
name 'u1' is assigned to the first and only output channel. For more
information about naming channels, see “Naming, Adding, and Removing
Input and Output Channels” on page 3-47.

Constructing iddata for Frequency-Domain Data
Frequency-domain data is the Fourier transform of the input and output
signals at specific frequency values. To store frequency-domain data, use the
following syntax to create the iddata object:

data = iddata(y,u,Ts,'Frequency',w)

'Frequency' is an iddata property that specifies the frequency value w,
respectively. Ts is the time interval between successive data samples in
seconds, and w is the frequency column vector that defines the frequencies at
which System Identification Toolbox calculates the Fourier transform values
of y and u. w, y, and u have the same number of rows.
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Note You must specify the frequency vector.

For more information about iddata time and frequency properties, see
“Modifying Time and Frequency Vectors” on page 3-43.

To specify a continuous-time system, set Ts to 0.

You can specify additional properties when you create the iddata object using
the constructor syntax:

data = iddata(y,u,Ts,'Property1',Value1,...,'PropertyN',ValueN)

For more information about accessing object properties, see “iddata
Properties” on page 3-34.

iddata Properties
To view the properties of the iddata object, use the get command. For
example, type the following commands at the MATLAB prompt:

load dryer2 % Load input u2 and output y2
data = iddata(y2,u2,0.08); % Create iddata object
get(data) % Get property values of data
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MATLAB returns the following object properties and values:

Domain: 'Time'
Name: []

OutputData: [1000x1 double]
y: 'Same as OutputData'

OutputName: {'y1'}
OutputUnit: {''}
InputData: [1000x1 double]

u: 'Same as InputData'
InputName: {'u1'}
InputUnit: {''}

Period: Inf
InterSample: 'zoh'

Ts: 0.0800
Tstart: []

SamplingInstants: [1000x0 double]
TimeUnit: ''

ExperimentName: 'Exp1'
Notes: []

UserData: []

For a complete description of all properties, see the iddata reference page or
type idprops iddata at the MATLAB prompt.

You can specify properties when you create an iddata object using the
constructor syntax:

data = iddata(y,u,Ts,'Property1',Value1,...,'PropertyN',ValueN)

To change property values for an existing iddata object, use the set function
or dot notation. For example, to change the sampling interval to 0.05, type
the following at the MATLAB prompt:

set(data,'Ts',0.05)

or equivalently

data.ts = 0.05
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Property names are not case sensitive. You do not need to type the entire
property name if the portion of the name you do enter uniquely identifies
the property.

Tip You can use data.y as an alternative to data.OutputData to access the
output values, or use data.u as an alternative to data.InputData to access
the input values

An iddata object containing frequency-domain data includes
frequency-specific properties, such as Frequency for the frequency vector and
Units for frequency units (instead of Tstart and SamplingIntervals).

To view the property list, type the following command sequence at the
MATLAB prompt:

% Load input u2 and output y2
load dryer2;

% Create iddata object
data = iddata(y2,u2,0.08);

% Take the Fourier transform of the data
% transforming it to frequency domain

data = fft(data)
% Get property values of data

get(data)
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MATLAB returns the following object properties and values:

Domain: 'Frequency'
Name: []

OutputData: [501x1 double]
y: 'Same as OutputData'

OutputName: {'y1'}
OutputUnit: {''}
InputData: [501x1 double]

u: 'Same as InputData'
InputName: {'u1'}
InputUnit: {''}

Period: Inf
InterSample: 'zoh'

Ts: 0.0800
Units: 'rad/s'

Frequency: [501x1 double]
TimeUnit: ''

ExperimentName: 'Exp1'
Notes: []

UserData: []

Creating Multiexperiment Data Sets
You can create iddata objects that contain several experiments in the
MATLAB Command Window. In the context of System Identification Toolbox,
experiments can mean data collected during different sessions, or portions of
the data collected during a single session. In the latter situation, you can
create a multiexperiment iddata object by splitting the data from a single
session into multiple segments to exclude bad data, and merge the good data
portions.

Identifying models for an iddata object with multiple experiments results in
an average model that takes into account all data sets stored in the object.

Note The idfrd object does not support the iddata equivalent of
multiexperiment data.
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You can only merge data sets that have all of the following characteristics:

• The same number of input and output channels.

• The same input and output channel names.

• The same type (that is, time-domain data or frequency-domain data)

This section discusses the following topics:

• “Merging Data Sets” on page 3-38

• “Adding Experiments to an Existing iddata Object” on page 3-38

Merging Data Sets
Create a multiexperiment iddata object by merging iddata objects, where
each contains data from a single experiment or is a multiexperiment data set.
For example, you can use the following syntax to merge data:

load iddata1 % Loads iddata object z1
load iddata3 % Loads iddata object z3
z = merge(z1,z3) % Merges experiments z1 and z3 into

% the iddata object z

This merge results in an iddata object with two experiments, where the
experiments are assigned default names 'Exp1' and 'Exp2', respectively.

Adding Experiments to an Existing iddata Object
You can add experiments individually to an iddata object as an alternative
approach to merging data sets, as described in “Merging Data Sets” on page
3-22.

For example, to add the experiments in the iddata object dat4 to data, use
the following syntax:

data(:,:,:,'Run4') = dat4

This syntax explicitly assigns the experiment name 'Run4' to the new
experiment. The ExperimentName property of the iddata object stores
experiment names.
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For more information about subreferencing experiments in a multiexperiment
data set, see “Subreferencing Experiments” on page 3-42.

Subreferencing iddata Objects
Subreferencing data and its properties lets you select data and assign new
data and property values.

This sections describes the syntax for subreferencing iddata objects and
contains the following sections:

• “Subreferencing Input and Output Data” on page 3-39

• “Subreferencing Data Channels” on page 3-40

• “Subreferencing Experiments” on page 3-42

Subreferencing Input and Output Data
Use the following general syntax to subreference specific data values in
iddata objects:

data(samples,outputchannels,inputchannels,experimentname)

In this syntax, samples specify one or more sample indexes, outputchannels
and inputchannels specify channel indexes or channel names, and
experimentname specifies experiment indexes or names.

For example, to retrieve samples 5 through 30 in the iddata object data and
store them in a new iddata object data_sub, use the following syntax:

data_sub = data([5:30])

You can also use logical expressions to subreference data. For example, to
retrieve all data values that fall between sample instants 1.27 and 9.3 in the
iddata object data and assign them to data_sub, use the following syntax:

data_sub = data(data.sa>1.27&data.sa<9.3)
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Note You do not need to type the entire property name. In this example, sa
in data.sa uniquely identifies the SamplingInstants property.

You can retrieve the input signal from an iddata object using the following
commands:

u = get(data,'InputData')

or

data.InputData

or

data.u % u is the abbreviation for InputData

Similarly, you can retrieve the output data using

data.OutputData

or

data.y % y is the abbreviation for OutputData

Subreferencing Data Channels
Use the following general syntax to subreference specific data values in
iddata objects:

data(samples,outputchannels,inputchannels,experimentname)

In this syntax, samples specify one or more sample indexes, outputchannels
and inputchannels specify channel indexes or channel names, and
experimentname specifies experiment indexes or names.

To specify several channel names, you must use a cell array of name strings.
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For example, suppose the iddata object data contains three output channels
(named y1, y2, and y3), and four input channels (named u1, u2, u3, and u4).
To retrieve all data samples in y3, u1, and u4, type the following command at
the MATLAB prompt:

% Uses a cell array to reference
% input channels 'u1' and 'u4'
data_sub = data(:,'y3',{'u1','u4'})

or equivalently

% Uses channel indexes 1 and 4
% to reference the input channels

data_sub = data(:,3,[1 4])

Tip Use a colon (:) to specify all samples or all channels, and the empty
matrix ([]) to specify no samples or channels.

If you want to create a time-series object by extracting only the output data
from an iddata object, type the following command:

data_ts = data(:,:,[])

You can assign new values to subreferenced variables. For example, the
following command assigns the first ten values of output channel 1 of data to
values in samples 101 through 110 in the output channel 2 of data1. It also
assigns the first ten values of input channel 1 of data to values in samples
101 through 110 in the input channel 3 of data1.

data(1:10,1,1) = data1(101:110,2,3)
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Subreferencing Experiments
Use the following general syntax to subreference specific experiments in
iddata objects:

data(samples,outputchannels,inputchannels,experimentname)

In this syntax, samples specify one or more sample indexes, outputchannels
and inputchannels specify channel indexes or channel names, and
experimentname specifies experiment indexes or names.

When specifying several experiment names, you must use a cell array of name
strings. The iddata object stores experiments name in the ExperimentName
property.

For example, suppose the iddata object data contains five experiments with
default names, Exp1, Exp2, Exp3, Exp4, and Exp5. Use the following syntax to
subreference the first and fifth experiment in data:

data_sub = data(:,:,:,{'Exp1','Exp5'}) % Using experiment name

or

data_sub = data(:,:,:,[1 5]) % Using experiment index

Tip Use a colon (:) to denote all samples and all channels, and the empty
matrix ([]) to specify no samples and no channels.

Alternatively, you can use the getexp command. The following example shows
how to subreference the first and fifth experiment in data:

data_sub = getexp(data,{'Exp1','Exp5'}) % Using experiment name

or

data_sub = getexp(data,[1 5]) % Using experiment index

The following example shows how to retrieve the first 100 samples of output
channels 2 and 3 and input channels 4 to 8 of Experiment 3:

dat(1:100,[2,3],[4:8],3)
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Modifying Time and Frequency Vectors
The iddata object stores time-domain data or frequency-domain data and has
several properties that specify the time or frequency values. To modify the
time or frequency values, you must change the corresponding property values.

Note You can modify the property SamplingInstants by setting it to a
new vector with the length equal to the number of data samples. For more
information, see “Constructing iddata for Time-Domain Data” on page 3-32.

The following two tables summarize these time-vector and frequency-vector
properties and gives an example of setting each value. In each of the syntax
examples, data is an iddata object.

Note Property names are not case sensitive. You do not need to type the
entire property name if the first few letters uniquely identify the property.
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iddata Time-Vector Properties

Name of
Time-Vector
Property

Description Syntax Example

Ts Sampling time interval.

• For a single
experiment, Ts is a
scalar value.

• For multiexperiement
data with Ne
experiments, Ts is
a 1-by-Ne cell array,
and each cell contains
the sampling interval
of the corresponding
experiment.

To set the sampling
interval to 0.05:

set(data,'ts',0.05)

or

data.ts = 0.05

Tstart Starting time of the
experiment.

• For a single
experiment, Ts is a
scalar value.

• For multiexperiement
data with Ne
experiments, Ts is
a 1-by-Ne cell array,
and each cell contains
the sampling interval
of the corresponding
experiment.

To change starting time
of the first data sample to
24:

data.Tstart = 24

Time units are set by the
property TimeUnit.
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iddata Time-Vector Properties (Continued)

Name of
Time-Vector
Property

Description Syntax Example

SamplingInstants Time values in the time
vector, computed from the
properties Tstart and Ts.

• For a single
experiment,
SamplingInstants
is an N-by-1 vector.

• For multiexperiement
data with Ne
experiments, this
property is a 1-by-Ne
cell array, and each
cell contains the
sampling instants
of the corresponding
experiment.

To retrieve the time vector
for iddata object data,
use:
get(data,'sa')To plot
the input data as a
function of time:

plot(data.sa,data.u)

Note sa uniquely
identifies the
SamplingInstants
property.

TimeUnit Unit of time. To change the unit of the
time vector to msec:

data.ti = 'msec'
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iddata Frequency-Vector Properties

Name of
Frequency-Vector
Property

Description Syntax Example

Frequency Frequency values at
which the Fourier
transforms of the signals
are defined.

• For a single
experiment, Frequency
is a scalar value.

• For multiexperiement
data with Ne
experiments,
Frequency is a
1-by-Ne cell array,
and each cell contains
the frequencies of
the corresponding
experiment.

To specify 100 frequency
values in log space,
ranging between 0.1 and
100, use the following
syntax:

data.freq =
logspace(-1,2,100)

Units Frequency unit must
have the following values:

• If the TimeUnit is
empty or s (seconds),
enter rad/s or Hz

• If the TimeUnit is any
string unit (other than
s), enter rad/unit.

For multiexperiement
data with Ne experiments,
Units is a 1-by-Ne cell
array, and each cell
contains the frequency
unit for each experiment.

If you specified the
TimeUnit as msec, your
frequency units must be:

data.unit=
'rad/msec'
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Naming, Adding, and Removing Input and Output
Channels
A multivariate system might contain several input variables or several output
variables, or both. When an input or output signal includes several measured
variables, these variables are called channels. This section describes how to
perform the following operations on iddata channels:

• “Naming Channels” on page 3-47

• “Adding Channels” on page 3-48

• “Modifying Channel Data” on page 3-48

Naming Channels
The iddata properties InputName and OutputName store one or more channel
names for the input and output signals. When you plot the data, you use
channel names to select the variable displayed on the plot. If you have
multivariate data, you should assign a name to each channel that describes
the measured variable. For more information about selecting channels on a
plot, see “Selecting Measured and Noise Channels in Plots” on page 2-33.

You can use the set command to specify the names of individual channels.
For example, suppose data contains two input channels (voltage and current)
and one output channel (temperature). To set these channel names, use the
following syntax:

set(data,'InputName',{'Voltage','Current'},
'OutputName','Temperature')

Tip You can also specify channel names as follows:

data.una = {'Voltage','Current')
data.yna = 'Temperature'

una is equivalent to the property InputName, and yna is equivalent to
OutputName.
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If you do not specify channel names when you create the iddata object,
System Identification Toolbox assigns default names. By default, the output
channels are named 'y1','y2',...,'yn', and the input channels are named
'u1','u2',...,'un'.

Adding Channels
You can add channels to input and output data in an iddata object.

For example, consider an iddata object named data that contains an input
signal with four channels. To add a fifth input channel, stored in the MATLAB
vector Input5, use the following syntax:

data.u(:,5) = Input5;

In this example, data.u(:,5) references all samples as (indicated by :) of the
input signal u and sets the values of the fifth channel. This channel is created
when assigning its value to Input5.

You can also combine input channels and output channels of several iddata
objects into one iddata object using concatenation. For more information, see
“Concatenating iddata Objects” on page 3-49.

Modifying Channel Data
After you create an iddata object, you can modify or remove specific input
and output channels, if needed. You can accomplish this by subreferencing
the input and output matrices and assigning new values.

For example, suppose the iddata object data contains three output channels
(named y1, y2, and y3), and four input channels (named u1, u2, u3, and u4).
To replace data such that it only contains samples in y3, u1, and u4, type the
following at the MATLAB prompt:

data = data(:,3,[1 4])

The resulting data object contains one output channel and two input channels.
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Concatenating iddata Objects
This section describes horizontal and vertical concatenation of iddata
objects. For this discussion, it is useful to know that the InputData iddata
property stores columnwise input data, and the OutputData property stores
columnwise output data. For more information about accessing iddata
properties, see “iddata Properties” on page 3-34.

Horizontal Concatenation
Horizontal concatenation of iddata objects creates a new iddata object
that appends all InputData information and all OutputData. This type of
concatenation produces a single object with more inputs and more outputs.
For example, the following syntax performs horizontal concatenation on the
iddata objects data1,data2,...,dataN:

data = [data1,data2,...,dataN]

This syntax is equivalent to the following longer syntax:

data.InputData =
[data1.InputData,data2.InputData,...,dataN.InputData]

data.OutputData =
[data1.OutputData,data2.OutputData,...,dataN.OutputData]

For horizontal concatenation, data1,data2,...,dataN must have the same
number of samples and experiments and equal Ts and Tstart values.

The channels in the concatenated iddata object are named according to the
following rules:

• Combining default channel names. If you concatenate iddata objects
with default channel names, such as u1 and y1, channels in the new iddata
object are automatically renamed to avoid name duplication.

• Combining duplicate input channels. If data1,data2,...,dataN
have input channels with duplicate user-defined names, such that dataK
contains channel names that are already present in dataJ with J < K, the
dataK channels are ignored.

• Combining duplicate output channels. If data1,data2,...,dataN
have input channels with duplicate user-defined names, only the output
channels with unique names are added during the concatenation.
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Vertical Concatenation
Vertical concatenation of iddata objects creates a new iddata object that
vertically stacks the input and output data values in the corresponding data
channels. The resulting object has the same number of channels, but each
channel contains more data points. For example, the following syntax creates
a data object such that its total number of samples is the sum of the samples
in data1,data2,...,dataN.

data = [data1;data2;... ;dataN]

This syntax is equivalent to the following longer syntax:

data.InputData =
[data1.InputData;data2.InputData;...;dataN.InputData]

data.OutputData =
[data1.OutputData;data2.OutputData;...;dataN.OutputData]

For vertical concatenation, data1,data2,...,dataN must have the same
number of input channels, output channels, and experiments.
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Creating idfrd Objects
This section describes how to construct idfrd objects to represent the values
and properties of frequency-response data.

You can measure frequency-response data values directly using a spectrum
analyzer, for example, which provides a compact representation of the
relationship between input and output (compared to storing input and output
independently).

Frequency-response values also represent a (nonparametric) model of the
relationship between the input and the output data. You might use such a
model, which consists of a table of values, to examine the system frequency
response. However, you cannot use this model for simulation and prediction
and must create a parametric model from the frequency-response data.

For more information about estimating linear models, see Chapter 5,
“Estimating Linear Nonparametric and Parametric Models”. To learn more
about estimating nonlinear models, see Chapter 6, “Estimating Nonlinear
Black-Box Models”.

For more information about frequency-response data, see “Requirements for
Frequency-Response Data” on page 3-9.

This section discusses the following topics:

• “idfrd Constructor” on page 3-52

• “idfrd Properties” on page 3-53

• “Subreferencing idfrd Objects” on page 3-55

• “Concatenating idfrd Objects” on page 3-56

There are also other System Identification Toolbox operations that create
idfrd objects, including the following:

• Transforming iddata objects. For more information, see “Transforming
Between Frequency-Domain and Frequency-Response Data” on page 3-68.

• Estimating nonparametric models using etfe, spa, and spafdr. For more
information, see “Spectral Analysis Models” on page 5-31.

3-51



3 Representing Data for System Identification

• Converting the Control Systems Toolbox frd object. For more information,
see “Using Models with Control System Toolbox” on page 10-20.

idfrd Constructor
The idfrd represents complex frequency-response data.

Before you can create an idfrd object, see “Requirements for
Frequency-Response Data” on page 3-9.

Note The idfrd object can only encapsulate one frequency-response data
set. It does not support the iddata equivalent of multiexperiment data.

Use the following syntax to create the data object fr_data:

fr_data = idfrd(response,f,Ts)

Suppose that ny is the number of output channels, nu is the number of
input channels, and nf is a vector of frequency values. response is an
ny-by-nu-by-nf 3-D array. f is the frequency vector that contains the
frequencies of the response.Ts is the sampling time, which is used when
measuring or computing the frequency response. If you are working with a
continuous-time system, set Ts to 0.

response(ky,ku,kf), where ky, ku, and kf reference the kth output, input,
and frequency value, respectively, is interpreted as the complex-valued
frequency response from input ku to output ky at frequency f(kf).

Note When you work in the MATLAB Command Window, you can only
create idfrd objects from complex values of G(eiw). For a SISO system,
response can be a vector.

You can specify object properties when you create the idfrd object using
the constructor syntax:

fr_data = idfrd(response,f,Ts,
'Property1',Value1,...,'PropertyN',ValueN)
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idfrd Properties
To view the properties of the idfrd object, you can use the get command.
The following example shows how to create an idfrd object that contains
100 frequency-response values with a sampling time interval of 0.08 seconds
and get its properties:

% Create the idfrd data object
fr_data = idfrd(response,f,0.08)

% Get property values of data
get(fr_data)

response and f are variables in the MATLAB workspace, representing the
frequency-response data and frequency values, respectively.

MATLAB returns the following object properties and values:

ans =

Name: ''
Frequency: [100x1 double]

ResponseData: [1x1x100 double]
SpectrumData: []

CovarianceData: []
NoiseCovariance: []

Units: 'rad/s'
Ts: 0.0800

InputDelay: 0
EstimationInfo: [1x1 struct]

InputName: {'u1'}
OutputName: {'y1'}
InputUnit: {''}

OutputUnit: {''}
Notes: []

UserData: []

For a complete description of all idfrd object properties, see the idfrd
reference page or type idprops idfrd at the MATLAB prompt.
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To change property values for an existing idfrd object, use the set function
or dot notation. For example, to change the name of the idfrd object, type the
following command sequence at the MATLAB prompt:

% Set the name of the f_data object
set(fr_data,'name','DC_Converter')

% Get fr_data properties and values
get(fr_data)

Property names are not case sensitive. You do not need to type the entire
property name, but only as much of the name as uniquely identify the idfrd
property.

If you import fr_data into the System Identification Tool, this data has
the name DC_Converter in the GUI, and not the MATLAB variable name
fr_data.

MATLAB returns the following object properties and values:

ans =

Name: 'DC_Converter'
Frequency: [100x1 double]

ResponseData: [1x1x100 double]
SpectrumData: []

CovarianceData: []
NoiseCovariance: []

Units: 'rad/s'
Ts: 0.0800

InputDelay: 0
EstimationInfo: [1x1 struct]

InputName: {'u1'}
OutputName: {'y1'}
InputUnit: {''}

OutputUnit: {''}
Notes: []

UserData: []
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Subreferencing idfrd Objects
You can reference specific data values in the idfrd object using the following
syntax:

fr_data(outputchannels,inputchannels)

Reference specific channels by name or by channel index.

Tip Use a colon (:) to specify all channels, and use the empty matrix ([]) to
specify no channels.

For example, the following command references frequency-response data from
input channel 3 to output channel 2:

fr_data(2,3)

You can also access the data in specific channels using channel names. To list
multiple channel names, use a cell array. For example, to retrieve the power
output, and the voltage and speed inputs, use the following syntax:

fr_data('power',{'voltage','speed'})

To retrieve only the responses corresponding to frequency values between 200
and 300, use the following command:

fr_data_sub = fselect(fr_data,[200:300])

You can also use logical expressions to subreference data. For example, to
retrieve all frequency-response values between frequencies 1.27 and 9.3 in
the idfrd object fr_data, use the following syntax:

fr_data_sub = fselect(fr_data,fr_data.f>1.27&fr_data.f<9.3)

Note You do not need to type the entire property name. In this example, f in
fr_data.f uniquely identifies the Frequency property of the idfrd object.
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Concatenating idfrd Objects
The horizontal and vertical concatenation of idfrd objects combine
information in the ResponseData properties of these objects. ResponseData is
an ny-by-nu-by-nf array that stores the response of the system, where ny is
the number of output channels, nu is the number of input channels, and nf is
a vector of frequency values (see “idfrd Properties” on page 3-53).

This section discusses the following topics:

• “Horizontal Concatenation of idfrd Objects” on page 3-56

• “Vertical Concatenation of idfrd Objects” on page 3-57

• “Concatenating Noise Spectral Data of idfrd Objects” on page 3-58

Horizontal Concatenation of idfrd Objects
The following syntax creates a new idfrd object data that contains the
horizontal concatenation of data1,data2,...,dataN:

data = [data1,data2,...,dataN]

data contains the frequency responses from all of the inputs in
data1,data2,...,dataN to the same outputs. The following diagram is a
graphical representation of horizontal concatenation of frequency-response
data. The (j,i,:) vector of the resulting response data represents the
frequency response from the ith input to the jth output at all frequencies.
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Note Horizontal concatenation of idfrd objects requires that they have
the same outputs and frequency vectors. If the output channel names are
different and their dimensions are the same, the concatenation operation uses
the names of output channels in the first idfrd object. Input channels must
have unique names.

Vertical Concatenation of idfrd Objects
The following syntax creates a new idfrd object data that contains the
vertical concatenation of data1,data2,...,dataN:

data = [data1;data2;... ;dataN]

The resulting idfrd object data contains the frequency responses from
the same inputs in data1,data2,...,dataN to all the outputs. The
following diagram is a graphical representation of vertical concatenation of
frequency-response data. The (j,i,:) vector of the resulting response data
represents the frequency response from the ith input to the jth output at all
frequencies.
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Note Vertical concatenation of idfrd objects requires that they have the
same inputs and frequency vectors. If the input channel names are different
and their dimensions are the same, the concatenation operation uses the
names of input channels in the first idfrd object you listed. Output channels
must have unique names.
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Concatenating Noise Spectral Data of idfrd Objects
When the idfrd objects contain the frequency-response data you measured
or constructed manually, the concatenation operation combines only the
ResponseData properties. Because the noise spectral data does not exist
(unless you also entered it manually), SpectralData is empty in both the
individual idfrd objects and the concatenated idfrd object.

However, when the idfrd objects are spectral models that you estimated, the
SpectralData property is not empty and contains the power spectra and cross
spectra of the output noise in the system. For each output channel, System
Identification Toolbox estimates one noise channel to explain the difference
between the output of the model and the measured output.

When the SpectralData property of individual idfrd objects is not empty,
horizontal and vertical concatenation handle SpectralData, as follows.

In case of horizontal concatenation, there is no meaningful way to combine the
SpectralData of individual idfrd objects and the resulting SpectralData
property is empty. An empty property results because each idfrd object has
its own set of noise channels, where the number of noise channels equals the
number of outputs. When the resulting idfrd object contains the same output
channels as each of the individual idfrd objects, it cannot accommodate the
noise data from all the idfrd objects.

In case of vertical concatenation, System Identification Toolbox
concatenates individual noise models diagonally. The following shows that
data.SpectrumData is a block diagonal matrix of the power spectra and cross
spectra of the output noise in the system:

data s
data s

dataN s

.
.

.

=

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

1 0

0
O

s in data.s is the abbreviation for the SpectrumData property name.
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Transforming Between Time- and Frequency-Domain Data
You can transform between time-domain, frequency domain, and
frequency-response data. For a description of each of these types of data, see
“Data Requirements” on page 3-5. The Toolbox commands for estimation
and simulation apply indiscriminately to time-domain, frequency-domain,
and frequency-response data.

This section discusses the following topics:

• “Transforming Data in the System Identification Tool” on page 3-59

• “Functions for Transforming Data” on page 3-66

Transforming Data in the System Identification Tool
This section describes how to use System Identification Tool for:

• “Transforming Time-Domain Data” on page 3-59

• “Transforming Frequency-Domain Data” on page 3-63

• “Transforming Frequency-Response Data” on page 3-64

To learn how to transform data in the MATLAB Command Window instead of
System Identification Tool GUI, see “Functions for Transforming Data” on
page 3-66. For more information about working with System Identification
Tool, see Chapter 2, “Working with the System Identification Tool GUI”.

Transforming Time-Domain Data
In the System Identification Tool window, time-domain data has an icon with a
white background. You can transform time-domain data to frequency-domain
or frequency-response data. The frequency values of the resulting frequency

vector range from 0 to the Nyquist frequency fS Ts= π , where Ts is the
sampling interval.

Transforming from time-domain to frequency-response data is equivalent to
creating a nonparametric model of the data using the spafdr method.
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1 In the System Identification Tool window, drag the icon of the data you
want to transform to the Working Data rectangle, as shown in the
following figure.
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2 In the Operations area, select Preprocess > Transform data in the
drop-down menu to open the Transform Data dialog box.
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3 In the Transform to drop-down list, select one of the following:

• Frequency Domain Data — Create a new iddata object using the fft
method. Go to step 6.

• Frequency Function — Create a new idfrd object using the spafdr
method. Go to step 4.

4 In the Frequency Spacing list, select the spacing of the frequencies at
which the frequency function is estimated:

• linear — Uniform spacing of frequency values between the endpoints.

• logarithmic — Base-10 logarithmic spacing of frequency values
between the endpoints.

5 In the Number of Frequencies field, enter the number of frequency
values.

6 In the Name of new data field, type the name of the new data set. This
name must be unique in the Data Board.

7 Click Transform to add the new data set to the Data Board in the System
Identification Tool window.

8 Click Close to close the Transform Data dialog box.
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Transforming Frequency-Domain Data
In the System Identification Tool window, frequency-domain data has an
icon with a green background. You can transform frequency-domain data to
time-domain or frequency-response (frequency-function) data.

Transforming from time-domain or frequency-domain data to
frequency-response data is equivalent to creating a nonparametric model of
the data using the spafdr method.

1 In the System Identification Tool window, drag the icon of the data you
want to transform to the Working Data rectangle.

2 Select Preprocess > Transform data.

3 In the Transform to list, select one of the following:

• Time Domain Data — Create a new iddata object using the ifft
(inverse Fast-Fourier Transform) method. Go to step 6.

• Frequency Function — Create a new idfrd object using the spafdr
method. Go to step 4.

4 In the Frequency Spacing list, select the spacing of the frequencies at
which the frequency function is estimated:

• linear — Uniform spacing of frequency values between the endpoints.

• logarithmic — Base-10 logarithmic spacing of frequency values
between the endpoints.

5 In the Number of Frequencies field, enter the number of frequency
values.

6 In the Name of new data field, type the name of the new data set. This
name must be unique in the Data Board.

7 Click Transform to add the new data set to the Data Board in the System
Identification Tool window.

8 Click Close to close the Transform Data dialog box.
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Transforming Frequency-Response Data
In the System Identification Tool window, frequency-response data has an
icon with a yellow background. You can transform frequency-response data to
frequency-domain data (iddata object) or to frequency-response data with a
different frequency resolution.

When you select to transform single-input and single-output (SISO)
frequency-response data to frequency-domain data, System Identification
Toolbox creates outputs that equal the frequency responses, and inputs equal
to 1. Therefore, the ratio between the Fourier transform of the output and the
Fourier transform of the input is equal to the system frequency response.

For the multiple-input case, System Identification Toolbox transforms the
frequency-response data to frequency-domain data as if each input contributes
independently to the entire output of the system and then combines
information. For example, if a system has three inputs, u1, u2, and u3 and
two frequency samples, the input matrix is set to:

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

In general, for nu inputs and ns samples (the number of frequencies), the
input matrix has nu columns and (ns ⋅ nu) rows.

Note To make the response from each input a separate experiment in the
MATLAB Command Window, see “Transforming Between Frequency-Domain
and Frequency-Response Data” on page 3-68.

When you transform frequency-response data by changing its frequency
resolution, you can modify the number of frequency values by changing
between linear or logarithmic spacing. You might specify variable frequency
spacing to increase the number of data points near the system’s resonance
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frequencies, and also make the frequency vector coarser in the region outside
the system dynamics. Typically, high-frequency noise dominates away
from frequencies where interesting system dynamics occur. The System
Identification Tool lets you specify logarithmic frequency spacing, which
results in a variable frequency resolution.

Note The spafdr function lets you lets you specify any variable frequency
resolution.

1 In the System Identification Tool window, drag the icon of the data you
want to transform to the Working Data rectangle.

2 Select Preprocess > Transform data.

3 In the Transform to list, select one of the following:

• Frequency Domain Data — Create a new iddata object. Go to step 6.

• Frequency Function — Create a new idfrd object with different
resolution (number and spacing of frequencies) using the spafdr method.
Go to step 4.

4 In the Frequency Spacing list, select the spacing of the frequencies at
which the frequency function is estimated:

• linear — Uniform spacing of frequency values between the endpoints.

• logarithmic — Base-10 logarithmic spacing of frequency values
between the endpoints.

5 In the Number of Frequencies field, enter the number of frequency
values.

6 In the Name of new data field, type the name of the new data set. This
name must be unique in the Data Board.

7 Click Transform to add the new data set to the Data Board in the System
Identification Tool window.

8 Click Close to close the Transform Data dialog box.
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Functions for Transforming Data
This section summarizes the functions for transforming data between
time-domain, frequency-domain, and frequency-domain data and includes
the following topics:

• “Supported Data Transformations” on page 3-66

• “Transforming Between Time and Frequency Domain” on page 3-67

• “Transforming Between Frequency-Domain and Frequency-Response
Data” on page 3-68

To learn how to transform data using the System Identification Tool instead,
see “Transforming Data in the System Identification Tool” on page 3-59.

Transforming from time-domain or frequency-domain data to
frequency-response data is equivalent to creating a nonparametric
model of the data. This section does not detail the process of estimating
frequency-response models. For more information about creating
nonparametric spectral models, see the etfe, spa, and spafdr reference pages.

Supported Data Transformations
The following table uses a matrix to show the different ways you can
transform the data of one format (row) to another format (column). If the
transformation is supported for a given row and column combination, the
method used by the software is listed in the cell at their intersection.

Original Data
Format

To Time Domain
(iddata object)

To Frequency
Domain
(iddata object)

To Frequency
Function
(idfrd object)

Time Domain
(iddata object)

No. Yes, using fft. Yes, using etfe,
spa, or spafdr.
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Original Data
Format

To Time Domain
(iddata object)

To Frequency
Domain
(iddata object)

To Frequency
Function
(idfrd object)

Frequency
Domain
(iddata object)

Yes, using ifft. No. Yes, using etfe,
spa, or spafdr.

Frequency
Function
(idfrd object)

No. Yes. Calculation
creates
frequency-domain
iddata object
that has the
same ratio
between output
and input as the
original idfrd
object.

Yes. Calculates
a frequency
function with
different
resolution
(number and
spacing of
frequencies)
using spafdr.

Transforming Between Time and Frequency Domain
The iddata object stores time-domain or frequency-domain data. The
following table summarizes the commands for transforming data between
time and frequency domains.
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Command Description Syntax Example

fft Transforms time-domain
data to the frequency
domain.

You can specify N, the
number of frequency
values.

To transform time-domain
iddata object t_data to
frequency-domain iddata
object f_data with N
frequency points, use:

f_data =
fft(t_data,N)

ifft Transforms
frequency-domain data
to the time domain.
Frequencies are linear and
equally spaced.

To transform
frequency-domainiddata
object f_data to
time-domain iddata
object t_data, use:

t_data =
ifft(f_data)

Transforming Between Frequency-Domain and
Frequency-Response Data
The idfrd object represents complex frequency-response of the system at
different frequencies. For a description of this type of data, see “Requirements
for Frequency-Response Data” on page 3-9.

This section describes how to transform frequency-response data to
frequency-domain data (iddata object). When you select to transform
single-input and single-output (SISO) frequency-response data to
frequency-domain data, System Identification Toolbox creates outputs that
equal the frequency responses, and inputs equal to 1. Therefore, the ratio
between the Fourier transform of the output and the Fourier transform of the
input is equal to the system frequency response.

For information about changing the frequency resolution of frequency-response
data to a new constant or variable (frequency-dependent) resolution, see the
spafdr reference pages. You might use this advanced feature to increase
the number of data points near the system’s resonance frequencies and also
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make the frequency vector coarser in the region outside the system dynamics.
Typically, high-frequency noise dominates away from frequencies where
interesting system dynamics occur.

Note You cannot transform an idfrd object to a time-domain iddata object.

To transform an idfrd object with the name idfrdobj to a frequency-domain
iddata object, use the following syntax:

dataf = iddata(idfrdobj)

The resulting frequency-domain iddata object contains values at the same
frequencies as the original idfrd object.

For the multiple-input case, System Identification Toolbox represents
frequency-response data as if each input contributes independently to the
entire output of the system and then combines information. For example, if
a system has three inputs, u1, u2, and u3 and two frequency samples, the
input matrix is set to:

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

In general, for nu inputs and ns samples, the input matrix has nu columns
and (ns ⋅ nu) rows.

If you have ny outputs, the transformation operation produces an output
matrix has ny columns and (ns ⋅ nu) rows using the values in the complex
frequency response G(iw) matrix (ny-by-nu-by-ns). In this example, y1 is
determined by unfolding G(1,1,:), G(1,2,:), and G(1,3,:) into three
column vectors and vertically concatenating these vectors into a single column.
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Similarly, y2 is determined by unfolding G(2,1,:), G(2,2,:), and G(2,3,:)
into three column vectors and vertically concatenating these vectors.

If you are working with multiple inputs, you also have the option of
storing the contribution by each input as an independent experiment in
a multiexperiment data set. To transform an idfrd object with the name
idfrdobj to a multiexperiment data set datf, where each experiment
corresponds to each of the inputs in idfrdobj

datf = iddata(idfrdobj,'me')

In this example, the additional argument 'me' specifies that multiple
experiments are created.

By default, transformation from frequency-response to frequency-domain
data strips away frequencies where the response is inf or NaN. To preserve
the entire frequency vector, use datf = iddata(idfrdobj,'inf'). For more
information, type help idfrd/iddata.
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Creating Data Using Simulation
System Identification Toolbox lets you generate input data and simulate
output data using a model structure.

You can also simulate data using Simulink and Signal Processing Toolbox.
Data simulated outside System Identification Toolbox must be in the
MATLAB workspace to be available to System Identification Toolbox
environment. For more information about simulating models using Simulink,
see “Using Models with Simulink” on page 10-26.

This section discusses the following topics:

• “Commands for Generating and Simulating Data” on page 3-71

• “Example – Creating Data with Periodic Inputs” on page 3-72

• “Example – Using sim to Simulate Model Output” on page 3-73

Commands for Generating and Simulating Data
Simulating output data requires that you have a parametric model. For more
information about commands for constructing models, see “Types of Model
Objects” on page 1-21.

To generate input data, use idinput to construct a signal with the desired
characteristics, such as a random Gaussian or binary signal or a sinusoid.
idinput returns a matrix of input values.

The following table lists the functions you can use to simulate output data.
For more information about these commands, see the references pages.
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Functions for Generating and Simulating Data

Function Description Example

iddata Constructs an iddata
object with input
channels only.

To construct input data data, use the
following command:

data = iddata([ ],[u v])

u is the input data, and v is white noise.

idinput Constructs a signal
with the desired
characteristics, such
as a random Gaussian
or binary signal or a
sinusoid, and returns a
matrix of input values.

u = iddata([],...
idinput(400,'rbs',[0 0.3]));

sim Simulates response data
based on existing linear
or nonlinear parametric
model in the MATLAB
workspace.

To simulate the model output y for a given
input, use the following command:

y = sim(m,data)

m is the model object name, and data is input
data matrix or iddata object.

Example – Creating Data with Periodic Inputs

1 Create a periodic input for two inputs and consisting of five periods, where
each period is 300 samples.

per_u = idinput([300 2 5])

2 Create an iddata object using the periodic input and leaving the output
empty.

u = iddata([],per_u,'Period',...
[300; 300]);
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You can use the periodic input to simulate the output, and the use etfe to
compute the estimated response of the model.

% Construct polynomial model
m0 =idpoly([1 -1.5 0.7],[0 1 0.5]);
% Construct random binary input
u = idinput([10 1 150],'rbs');
% Construct input data and noise
u = iddata([],u,'Period',10);
e = iddata([],randn(1500,1));
% Simulate model output with noise
y = sim(m0,[u e])
% Estimate frequency response
g = etfe([y u])
% Generate Bode plot
bode(g,'x',m0)

For periodic input, etfe honors the period and computes the frequency
response using an appropriate frequency grid. In this case, the Bode plot
shows a good fit at the five excited frequencies.

Example – Using sim to Simulate Model Output
This example demonstrates how you can create input data and a model, and
then use the data and the model to simulate output data. You create the
ARMAX model and simulate output data with random binary input u.

1 Load the three-input and one-output sample data.

load iddata8
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2 Construct an ARMAX model, using the following commands:

A = [1 -1.2 0.7];
B(1,:) = [0 1 0.5 0.1]; % first input
B(2,:) = [0 1.5 -0.5 0]; % second input
B(3,:) = [0 -0.1 0.5 -0.1]; % third input
C = [1 0 0 0 0];
Ts = 1;
m = idpoly(A,B,C,'Ts',1);

In this example, the leading zeros in the B matrix indicate the input delay
(nk), which is 1 for each input channel. The trailing zero in B(2,:) makes
the number of coefficients equal for all channels.

3 Construct pseudorandom binary data for input to the simulation.

u = idinput([200,3],'prbs');

4 Simulate the model output.

sim(m,u)

5 Compare model output to measured data to see how well the models
captures the underlying dynamics.

compare(z8,m)
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Plotting and Preprocessing
Data

Preparing Data for Identification
(p. 4-3)

Introduces tasks in System
Identification Toolbox that prepare
data for system identification.

Getting Advice About Your Data
(p. 4-5)

Describes how to use the advice
command to identify constant offsets
and linear trends, delays, feedback,
and signal excitation levels in the
data.

Plotting Data (p. 4-7) Describes how to plot time-domain,
frequency-domain, and
frequency-response data.

Handling Missing Data and Outliers
(p. 4-16)

Describes how to handle missing or
erroneous data values.

Detrending Data (p. 4-20) Describes how to remove constant
offsets and linear trends.

Resampling Data (p. 4-24) Describes how to decimate and
interpolate data.

Filtering the Data (p. 4-31) Describes how to decide whether to
filter data before model estimation,
and how to prefilter data.
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Selecting Data (p. 4-39) Describes how to select portions of
your data for identification.

Handling Complex-Valued Data
(p. 4-42)

Summarizes supported operations
and limitations for handling complex
data, and lists commands for
manipulating complex iddata
signals.
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Preparing Data for Identification
After representing data in System Identification Toolbox, as described in
Chapter 3, “Representing Data for System Identification”, you can that you
plot the data to examine its features. For more information about plotting
data, see “Plotting Data” on page 4-7.

You can also use the advice command to identify constant offsets and linear
trends, delays, feedback, and signal excitation levels in the data. For more
information, see “Getting Advice About Your Data” on page 4-5.

Note If your data is complex valued, see “Handling Complex-Valued Data” on
page 4-42 for information about supported operations in System Identification
Toolbox.

Review the plots or use the advice command to determine whether your data
requires preprocessing to prepare it for system identification. The following
issues indicate a need for preprocessing:

• Missing or faulty values (also known as outliers). For example,
you might see gaps that indicate missing data, values that
do not fit with the rest of the data, or noninformative values.
See “Handling Missing Data and Outliers” on page 4-16.

• Offsets and drifts in signal levels (low-frequency disturbances).

See “Detrending Data” on page 4-20 for information about subtracting
means and linear trends, and “Filtering the Data” on page 4-31 for
information about filtering.

• High-frequency disturbances above the frequency interval of interest for
the system dynamics.

See “Resampling Data” on page 4-24 for information about decimating and
interpolating values, and “Filtering the Data” on page 4-31 for information
about filtering.

• Nonlinearities in the data.

On a frequency-function plot, nonlinearities might be indicated by different
responses at different levels, or as different responses to a step-up versus a
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step-down input. If you suspect nonlinearities and have physical insight
into the relationship between the variables, try nonlinear transformation of
the data to make the model linear in the new (transformed) variables.

To learn more about estimating nonlinear models, see Chapter 6,
“Estimating Nonlinear Black-Box Models”.

By examining the quality of the signals and the frequency ranges that
appropriately capture the system dynamics, you can select portions of the
data to model, as described in “Selecting Data” on page 4-39. You can split a
single data set into two portions and use one portion for model estimation and
the other portion for model validation.

As an alternative preprocessing shortcut, you can select Preprocess > Quick
start to simultaneously perform the following four actions:

• Subtract the mean value from each channel.

• Split data into two halves.

• Specify the first half as estimation data for models (or Working Data).

• Specify the second half as Validation Data
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Getting Advice About Your Data
This section describes how to use the advice command to get information
about your time-domain or frequency-domain data. This command does not
support frequency-response data.

Note If you are using the System Identification Tool, you must export your
data to the MATLAB workspace before you can use the advice command
on this data. For more information about exporting data to the MATLAB
workspace, see “Exporting to the MATLAB Workspace” on page 2-27.

Suppose that data is an iddata object. advice(data) displays the following
information about the data in the MATLAB Command Window. Ask yourself:

• Does it make sense to remove constant offsets and linear trends from the
data? See also detrend.

• What are the excitation levels of the signals and how does this affects the
model orders? See also pexcit.

• Is there an indication of output feedback in the data? See also feedback.
When feedback is present in the system, only prediction-error methods
work well for estimating closed-loop data.

To estimate the delay from the input to the output in the system (dead time)
by using the data, use the delayest function. You need to know the delay
when specifying a model structure for estimation.

For following example shows how to get information about your data. Consider
data from a single-input and single-output system sampled at 0.08 second.
Use these commands to load the data and estimate the delay in the system:

load dryer2 % Load the sample input
% and output data

data=iddata(y2,u2,0.08) % Create iddata object
delayest(data) % Estimate delay (dead time)
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MATLAB responds with:

ans =

3

Type the following command to see what kind of information you receive
about this data set:

advice(data) % Get advice about the data

The results of using this command also suggest your next actions.
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Plotting Data
After representing data in System Identification Toolbox, as described in
Chapter 3, “Representing Data for System Identification”, you can plot the
data to examine its features.

System Identification Toolbox supports the following data plots:

• Time plot — Shows data values as a function of time.

• Spectral plot — Shows a periodogram that is computed by taking the
absolute squares of the Fourier transforms of the data, dividing by the
number of data points, and multiplying by the sampling interval.

• Frequency-response plot — For frequency-response data, shows the
amplitude and phase of the frequency-response function. For time- and
frequency-domain data, shows the empirical transfer function estimate
(see etfe) .

This section describes how to create plots when working in the System
Identification Tool or the MATLAB Command Window. Plots you create
using the plot commands, such as plot, bode, and ffplot, are displayed in
the standard MATLAB figure window, which provides extensive options for
formatting, saving, printing, and exporting plots to a variety of file formats.
For more information, see the MATLAB Graphics documentation.

The plots you create using the System Identification Tool provide different
options that are specific to System Identification Toolbox, such as selecting
specific channel pairs in a multivariate signals or converting frequency units
between hertz and radians per second.

The rest of this section discusses the following topics:

• “Plotting Data in the System Identification Tool” on page 4-7

• “Functions for Plotting Data” on page 4-13

Plotting Data in the System Identification Tool
After importing data into the System Identification Tool, as described in
“Creating Data Sets in the System Identification Tool” on page 3-13, you can
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plot the data. To create one or more plots, select the corresponding check box
in the Data Views area of the System Identification Tool window.

Active data sets have a thick line in the icon. Only active data sets are
displayed on the plots. To change whether to include or exclude a data set on
a plot, click the data icon in the System Identification Tool window.
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In this example, data1 and data3fd are active and appear on the three
selected plots.

The rest of this section discusses:

• “Working with a Time Plot” on page 4-9

• “Working with a Data Spectra Plot” on page 4-10

• “Working with a Frequency Function Plot” on page 4-12
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Working with a Time Plot
The Time plot only shows time-domain data. In this example, data1 is
displayed on the time plot because, of the three data sets, it is the only one
that contains time-domain input and output.

Time Plot of data1

Note You can plot several data sets with the same input and output channel
names. The plot displays data for all channels that have the same name. To
view a different input-output channel pair, select it from the Channel menu.
For more information about selecting different input and output pairs, see
“Selecting Measured and Noise Channels in Plots” on page 2-33.

The following table summarizes options that are specific to time plots, which
you can select from the plot window menus. For general information about
working with System Identification Toolbox plots, see “Working with Plots”
on page 2-29.
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Time Plot Options

Action Command

Toggle input display between
piecewise continuous (zero-order
hold) and linear interpolation
(first-order hold) between samples.

Note This option only affects the
display and not the intersample
behavior specified when importing
the data.

Select Style > Staircase input for
zero-order hold or Style > Regular
input for first-order hold.

Working with a Data Spectra Plot
The Data spectra plot shows a periodogram or a spectral estimate of data1
and data3fd.

The periodogram is that is computed by taking the absolute squares of the
Fourier transforms of the data, dividing by the number of data points, and
multiplying by the sampling interval. The spectral estimate for time-domain
data is a smoothed spectrum calculated using spa. For frequency-domain
data, the Data spectra plot shows the absolute value of the square of the
actual data.

The top axes show the input and the bottom axes show the output. The
vertical axis of each plot is labeled with the corresponding channel name.
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Periodograms of data1 and data3fd

Data Spectra Plot Options

Action Command

Toggle display between periodogram
and spectral estimate.

Select Options > Periodogram or
Options > Spectral analysis.

Change frequency units. Select Style > Frequency (rad/s)
or Style > Frequency (Hz).

Toggle frequency scale between
linear and logarithmic.

Select Style > Linear frequency
scale or Style > Log frequency
scale.

Toggle amplitude scale between
linear and logarithmic.

Select Style > Linear amplitude
scale or Style > Log amplitude
scale.
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Working with a Frequency Function Plot
For time-domain data, the Frequency function plot shows the empirical
transfer function estimate (etfe). For frequency-domain data, the plot shows
the ratio of output to input data.

The frequency-response plot shows the amplitude and phase plots of
the corresponding frequency response. For more information about
frequency-response data, see “Requirements for Frequency-Response Data”
on page 3-9.

Frequency Functions of data1 and data3fd

Frequency Function Plot Options

Action Command

Change frequency units. Select Style > Frequency (rad/s)
or Style > Frequency (Hz).
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Frequency Function Plot Options (Continued)

Action Command

Toggle frequency scale between
linear and logarithmic.

Select Style > Linear frequency
scale or Style > Log frequency
scale.

Toggle amplitude scale between
linear and logarithmic.

Select Style > Linear amplitude
scale or Style > Log amplitude
scale.

Functions for Plotting Data
The following table summarizes the functions available for plotting
time-domain, frequency-domain, and frequency-response data:

Functions for Plotting Data

Function Description Example

bode For frequency-response data
only. Shows the magnitude
and phase of the frequency
response on a logarithmic
frequency scale.

To plot idfrd data:

bode(idfrd_data)
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Functions for Plotting Data (Continued)

Function Description Example

ffplot For frequency-response
data only. Shows the
magnitude and phase of
the frequency response on
a linear frequency scale
(hertz).

To plot idfrd data:

ffplot(idfrd_data)

plot Depending on the type of
data, MATLAB generates
the corresponding type
of plot. For example,
plotting time-domain data
generates a time plot, and
plotting frequency-response
data generates a
frequency-response plot.

When plotting time- or
frequency-domain inputs
and outputs, the top axes
show the output and the
bottom axes show the input.

To plot iddata or idfrd
data:

plot(data)

Note For idfrd data, this
command is equivalent to
ffplot(data).

All plot commands display the data in the standard MATLAB Figure window.
For more information about working with the Figure window, see the
MATLAB Graphics documentation.

The following examples show use of the plot command.

To plot portions of the data, you can subreference specific samples (see
“Subreferencing iddata Objects” on page 3-39 and “Subreferencing idfrd
Objects” on page 3-55. For example:

plot(data(1:300))
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For time-domain data, to plot only the input data as a function of time, use
the following syntax:

plot(data(:,[],:)

When data.intersample = 'zoh', the input is piecewise constant between
sampling points on the plot. For more information about properties, see
“iddata Properties” on page 3-34 or the iddata reference page.

You can generate plots of the input data in the time domain using:

plot(data.sa,data.u)

To plot frequency-domain data, you can use the following syntax:

semilogx(data.fr,abs(data.u))

In this case, sa is an abbreviation of the iddata property SamplingInstants.
Similarly, fr is an abbreviation of Frequency. u is the input signal.

Note The frequencies are linearly spaced on the plot.

When you specify to plot a multivariable iddata object, each input-output
combination is displayed one at a time in the same MATLAB Figure window.
You must press Enter to update the Figure window and view the next channel
combination. To cancel the plotting operation, press Ctrl+C.

Tip To plot specific input and output channels, use plot(data(:,ky,ku)),
where ky and ku are specific output and input channel indexes or names. For
more information about subreferencing channels, see “Subreferencing Data
Channels” on page 3-40.

To plot several iddata sets d1,...,dN, use plot(d1,...,dN). Input-output
channels with the same experiment name, input name, and output name
are always plotted in the same plot.
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Handling Missing Data and Outliers
Malfunctions in the data acquisition equipment can result in missing data.
Malfunctions can also produce errors in measured values, called outliers.

When you import data that contains missing values into MATLAB using
the MATLAB Import Wizard, these values are automatically set to NaN
(“Not-A-Number”). NaN serves as a flag for nonexistent or undefined data.

This section describes how to handle these issues using functions and contains
the following topics:

• “Working with Missing Data” on page 4-16

• “Working with Outliers” on page 4-17

• “Example – Extracting and Modeling Specific Data Segments” on page 4-18

Note This functionality is not supported in the System Identification Tool.

To learn more about the theory of handling missing data and outliers, see the
chapter on preprocessing data in System Identification: Theory for the User,
Second Edition, by Lennart Ljung, Prentice Hall PTR, 1999.

Working with Missing Data
Data acquisition failures sometimes result in missing measurements both in
the input and the output channels. When you plot data on a time-plot that
contains missing values, gaps appear on the plot where missing data exists.
For more information on creating plots, see “Plotting Data” on page 4-7.

You can use misdata to estimate missing values. This function linearly
interpolates missing values to estimate the first model. Then, it uses this
model to estimate the missing data as parameters by minimizing the output
prediction errors obtained from the reconstructed data. You can specify the
model structure you want to use in the misdata argument or estimate a
default-order model using the n4sid method. For more information, see the
misdata reference pages.
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Note You can only use misdata on time-domain data stored in an iddata
object. For more information about creating iddata objects, see “Creating
iddata Objects” on page 3-31.

For example, suppose y and u are output and input signals that contain NaNs.
This data is sampled at 0.2 s. The following syntax creates a new iddata
object with these input and output signals.

dat = iddata(y,u,0.2) % y and u contain NaNs
% representing missing data

Apply the misdata function to the new data object. For example:

dat1 = misdata(dat);
plot(dat,dat1) % Check how the missing data

% was estimated on a time plot

Working with Outliers
Data acquisition failures can result in erroneous measurements. Such
outliers might be caused by signal spikes, or by measurement malfunctions.
If you do not remove outliers from your data, this can adversely affect the
estimated models. This section describes ways you can identify and handle
outliers in your data.

To identify the presence of outliers, perform one of the following tasks:

• Before estimating a model, plot the data on a time plot and identify values
that appear unreliable.

• After estimating a model, plot the residuals and identify unusually large
values. Then, evaluate the original data that is responsible for large
residuals. For example, for the model Model and validation data Data, you
can use the following commands to plot the residuals:

% Compute the residuals
E = resid(Model,Data)

% Plot the residuals
plot(E)
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Next, try these techniques for removing or minimizing the effects of outliers:

• Extract the informative data portions into segments and merge them into
one multiexperiment data set (see “Example – Extracting and Modeling
Specific Data Segments” on page 4-18). For more information about
selecting and extracting data segments, see “Selecting Data” on page 4-39.

Note The inputs in each of the data segments must be consistently exciting
the system. Splitting data into meaningful segments for steady-state
data results in minimum information loss. Avoid making data segments
too small.

• Manually replace outliers with NaNs and then use the misdata function to
reconstruct flagged data. This approach treats outliers as missing data and
is described in “Working with Missing Data” on page 4-16. Use this method
when your data contains several inputs and outputs, and when you have
difficulty finding reliable data segments in all variables.

• Remove outliers by prefiltering the data for high-frequency content because
outliers often result from abrupt changes. For more information about
filtering, see “Filtering the Data” on page 4-31.

Note The estimation algorithm handles outliers automatically by assigning
a smaller weight to outlier data. A robust error criterion applies an error
penalty that is quadratic for small and moderate prediction errors, and is
linear for large prediction errors. Because outliers produce large prediction
errors, this approach gives a smaller weight to the corresponding data points
during model estimation. The value LimitError (see Algorithm Properties)
quantitatively distinguishes between moderate and large outliers.

Example – Extracting and Modeling Specific Data
Segments
The following example shows how to create a multiexperiment, time-domain
data set by merging only the accurate-data segments and ignoring the rest.
Modeling multiexperiment data sets produces an average model for the
different experiments.
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You cannot simply concatenate the good data segments because the transients
at the connection points compromise the model. Instead, you must create a
multiexperiment iddata object, where each experiment corresponds to a good
segment of data, as follows:

% Plot the data in a MATLAB Figure window
plot(data)

% Create multiexperiment data set
% by merging data segments

datam = merge(data(1:340),...
data(500:897),...
data(1001:1200),...
data(1550:2000));

% Model the multiexperiment data set
% using "experiments" 1, 2, and 4
m =pem(getexp(datam,[1,2,4]))

% Validate the model by comparing its output to
% the output data of experiment 3
compare(getexp(datam,3),m)
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Detrending Data
Detrending data in System Identification Toolbox means removing the signal
mean values and linear trends from the signals.

In System Identification Tool, you can subtract the mean values and one
linear trend. If you are working in the MATLAB Command Window, the
detrend function lets you subtract mean values and one or several linear
trends connected at specified breakpoints. A breakpoint is a time value that
defines the discontinuities between successive linear trends.

This section discusses the following topics:

• “Detrending Data for Nonlinear Versus Linear Models” on page 4-20

• “When to Subtract the Mean Values” on page 4-21

• “When to Subtract Linear Trends” on page 4-21

• “Detrending Data Using the System Identification Tool” on page 4-22

• “Using the detrend Function” on page 4-23

For a detailed discussion about handling drifts in the data, see the chapter
on preprocessing data in System Identification: Theory for the User, Second
Edition, by Lennart Ljung, Prentice Hall PTR, 1999.

Detrending Data for Nonlinear Versus Linear Models
In general, you should detrend data before estimating linear models. For
more information, see “When to Subtract the Mean Values” on page 4-21 and
“When to Subtract Linear Trends” on page 4-21.

In general, you should not detrend data before estimating nonlinear models.
In the case of nonlinear grey-box models, do not detrend the data to make sure
that the models represent the actual physical levels.

For linear models, detrending is necessary because, theoretically, a zero mean
in the input results in a zero mean in the output.

Nonlinear models are more general and can include the trend as part of the
model. In this case, detrending is not necessary.

4-20



Detrending Data

However, there are some cases when detrending data for nonlinear models
might be helpful. For example, to improve computation accuracy, you might
detrend data with a large constant trend.

Note Whatever trend you subtract from the estimation data, you must
subtract the same trend from the validation data.

When to Subtract the Mean Values
You may find it useful to subtract mean values from your data when you
have steady-state and not transient data. If you have steady-state data,
estimating linear models for signals measured relative to an equilibrium is
usually sufficient. Thus, you can find linearized models around a physical
equilibrium and avoid modeling the absolute levels in physical units. You can
use the detrend function or System Identification Tool commands to subtract
mean levels from your signals.

Tip When you know the mean levels that correspond to the actual physical
equilibrium, remove the equilibrium values instead of the mean value of
the signals for best results.

Do not detrend your data when the physical levels are built into the underlying
model or when input integrators in the system require absolute signal levels.

When you are working with transient data (such as step or impulse response),
do not remove the mean from the data. With transient data, when the output
at zero input is not zero, you might want to subtract the constant value
corresponding to the time before the input is applied. Use core MATLAB
functions to subtract a constant value from the data matrices.

When to Subtract Linear Trends
Often, the mean levels drifts during the experiment. You can eliminate drift
by removing a linear trend or several piecewise linear trends from the signals.
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You can use the detrend function or the System Identification Tool to subtract
one linear trend from your signals from time-domain data. You must use the
detrend function to remove several piecewise-linear trends in time-domain
data or to remove the mean for frequency-domain data.

Signal drift is considered a low-frequency disturbance. If you know the drift
rate, you can build a custom high-pass filter and apply it as described in
“Filtering the Data” on page 4-31.

Detrending Data Using the System Identification Tool
If you are working in the System Identification Tool, you can detrend
time-domain data by removing the mean value and linear trend from each
channel. If you need to remove piecewise linear trends, see “Using the detrend
Function” on page 4-23. See “Detrending Data for Nonlinear Versus Linear
Models” on page 4-20 to decide whether it is appropriate to detrend your data.

For general information about working with System Identification Tool, see
Chapter 2, “Working with the System Identification Tool GUI”.

Note Select Preprocess > Quick start to remove the mean value from each
channel, split data into two halves, specify the first half as estimation data for
models (or Working Data), and specify the second half as Validation Data.

To detrend each input and output data channel:

1 Import time-domain data into the System Identification Tool, as described
in “Creating Data Sets in the System Identification Tool” on page 3-13.

2 Drag the data set you want to detrend to the Working Data area.

3 Determine if you want to remove both the mean values and the linear
trend from the data.

• If yes, select Preprocess > Remove trends. This creates a new data
set in the Data Board. You are finished.

• If no, go to step 4.
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4 To only remove constant offsets from the data, select
Preprocess > Remove means. This selection creates a new
data set in the Data Board.

Using the detrend Function
You can use the detrend command to remove the mean value and one or
more linear trends from each channel of time-domain data. See “Detrending
Data for Nonlinear Versus Linear Models” on page 4-20 to decide whether it
is appropriate to detrend your data.

It is only possible to remove a zero-order trend from frequency-domain data.
Detrending frequency-domain data is equivalent to setting the response to 0
at zero frequency.

Note You can only remove piecewise linear trends using detrend and not
System Identification Tool.

To remove mean values from each channel in data, which is an iddata object
that stores time-domain data or frequency-domain data, use the following
syntax:

data = detrend(data);

To subtract one linear trend, use the following syntax:

data = detrend(data,1);

In this case, 1 indicates that a first-order trend is removed from each channel.

You can also remove several linear trends that have connections at specified
“breakpoints”. For example:

data = detrend(data,1,[30 60 90]);

The vector [30 60 90] specifies the sample indexes of the data where
breakpoints occur.
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Resampling Data
Resampling data in System Identification Toolbox applies an antialiasing
(lowpass) FIR filter to the data and changes the sampling rate of the signal
by decimation or interpolation. If your data is sampled faster than needed
during the experiment, you can decimate it without information loss. If
your data is sampled more slowly than needed, there is a possibility that
you miss important information about the dynamics at higher frequencies.
Although you can resample the data at a higher rate, the resampled values
occurring between measured samples do represent measured information
about your system. Instead of resampling, repeat the experiment using a
higher sampling rate.

Tip You should decimate your data when it contains high-frequency noise
outside the frequency range of the system dynamics.

Resampling takes into account how the data behaves between samples, which
you specify when you import the data into the System Identification Tool
(zero-order or first-order hold).

You can resample data using the System Identification Tool or the resample
function. You can only resample time-domain data and at uniform time
intervals.

This section discusses the following topics:

• “Resampling Data Using System Identification Tool” on page 4-25

• “Using the resample Function” on page 4-25

• “Resampling Your Signal Without Aliasing Effects” on page 4-27

For a detailed discussion about handling disturbances, see the chapter on
preprocessing data in System Identification: Theory for the User, Second
Edition, by Lennart Ljung, Prentice Hall PTR, 1999.
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Resampling Data Using System Identification Tool
Use System Identification Tool to resample time-domain data. To specify
additional options, such as the prefilter order, see “Using the resample
Function” on page 4-25.

System Identification Tool uses idresamp to interpolate or decimate the
data. For more information about this function, type help idresamp at the
MATLAB prompt.

For general information about working with System Identification Tool, see
Chapter 2, “Working with the System Identification Tool GUI”.

To create a new data set by resampling the input and output signals:

1 Import time-domain data into the System Identification Tool, as described
in “Creating Data Sets in the System Identification Tool” on page 3-13.

2 Drag the data set you want to resample to the Working Data area.

3 In the Resampling factor field, enter the factor by which to multiply the
current sampling interval:

• For decimation (fewer samples), enter a factor greater than 1 to increase
the sampling interval by this factor.

• For interpolation (more samples), enter a factor less than 1 to decrease
the sampling interval by this factor.

Default = 1.

4 In the Data name field, type the name of the new data set. Choose a name
that is unique in the Data Board.

5 Click Insert to add the new data set to the Data Board in System
Identification Toolbox window.

6 Click Close to close the Resample dialog box.

Using the resample Function
Use resample to decimate and interpolate time-domain iddata objects. You
can specify the order of the antialiasing filter as an argument.
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Note resample uses Signal Processing Toolbox function, when this Toolbox
is installed on your computer. If this Toolbox is not installed, use idresamp
instead. idresamp only lets you specify the filter order, whereas resample
also lets you specify filter coefficients and the design parameters of the Kaiser
window.

To create a new iddata object datar by resampling data, use the following
syntax:

datar = resample(data,P,Q,filter_order)

In this case, P and Q are integers that specify the new sampling interval: the
new sampling interval is Q/P times the original one. You can also specify the
order of the resampling filter as a fourth argument filter_order, which is
an integer (default is 10). For detailed information about resample, see the
corresponding reference pages.

For example, resample(data,1,Q) results in decimation with the sampling
interval modified by a factor Q.

The next example shows how you can increase the sampling rate by a factor of
1.5 and compare the signals:

plot(u)
ur = resample(u,3,2);
plot(u,ur)

When Signal Processing Toolbox is not installed, using resample calls
idresamp instead.

idresamp uses the following syntax:

datar = idresamp(data,R,filter_order)

In this case, R=Q/P, which means that data is interpolated by a factor P and
then decimated by a factor Q. To learn more about idresamp, type help
idresamp.
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The data.InterSample property of the iddata object is taken into account
during resampling. For more information, see “iddata Properties” on page
3-34.

Resampling Your Signal Without Aliasing Effects
Typically, you decimate a signal to remove the high-frequency contributions
that result from noise from the total energy. Ideally, you want to remove the
energy contribution due to noise and preserve the energy density of the signal.

The function resample performs the decimation without aliasing effects.
This function includes a factor of T to normalize the spectrum and preserve
the energy density after decimation. For more information about spectrum
normalization, see “Spectrum Normalization and the Sampling Interval”
on page 5-40.

If you use manual decimation instead of resample—by picking every fourth
sample from the signal, for example—the energy contributions from higher
frequencies are folded back into the lower frequencies. Because the total
signal energy is preserved by this operation and this energy must now be
squeezed into a smaller frequency range, the amplitude of the spectrum at
each frequency increases. Thus, the energy density of the decimated signal
is not constant.
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The following example illustrates how resample avoids folding effects.

% Construct fourth-order MA-process
m0 = idpoly(1,[ ],[1 1 1 1]);
% Generate error signal
e = idinput(2000,'rgs');
e = iddata([],e,'Ts',1);
% Simulate the output using error signal
y = sim(m0,e);
% Estimate signal spectrum
g1 = spa(y);
% Estimate spectrum of modified signal including
% every fourth sample of the original signal.
% This command automatically sets Ts to 4.
g2 = spa(y(1:4:2000));
% Plot frequency response to view folding effects
ffplot(g1,g2)
% Estimate spectrum after prefiltering that does not
% introduce folding effects
g3 = spa(resample(y,1,4));
figure
ffplot(g1,g3)
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Folding Effects With Manual Decimation
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Use resample to decimate the signal before estimating the spectrum and plot
the frequency response, as follows:

g3 = spa(resample(y,1,4));
figure
ffplot(g1,g3)

The following figure shows that the estimated spectrum of the resampled
signal has the same amplitude as the original spectrum. Thus, there is no
indication of folding effect when you use a function such as resample to
eliminate aliasing.

No Folding Effects When Using resample
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Filtering the Data
You can use System Identification Tool or functions to filter the input and
output signals through a linear filter before estimating a model. How you
want to handle the noise in the system determines whether it is appropriate
to prefilter the data.

The filter available in the System Identification Tool is a fifth-order
(passband) Butterworth filter. If you need to specify a custom filter, use the
idfilt function in the MATLAB Command Window.

This section describes how to filter data before model estimation. You can also
filter data during linear model estimation by setting the Focus property of
the estimation algorithm to Filter and specifying the filter characteristics.
For more information about model properties, see the Algorithm Properties
reference pages.

This section discusses the following topics:

• “Deciding to Prefilter Your Data” on page 4-31

• “Filtering Data Using System Identification Tool” on page 4-32

• “Filtering Data Using the idfilt Function” on page 4-35

For more information about prefiltering data, see the chapter on preprocessing
data in System Identification: Theory for the User, Second Edition, by Lennart
Ljung, Prentice Hall PTR, 1999. For practical examples of prefiltering data,
see the section on posttreatment of data in Modeling of Dynamic Systems, by
Lennart Ljung and Torkel Glad, Prentice Hall PTR, 1994.

Deciding to Prefilter Your Data
Prefiltering data can help remove high-frequency noise or low-frequency
disturbances (drift). The latter application is an alternative to subtracting
linear trends from the data, as described in “Detrending Data” on page 4-20.

In addition to minimizing noise, prefiltering lets you focus your model on
specific frequency bands. The frequency range of interest often corresponds to
a passband over the breakpoints on a Bode plot (see “Plotting Data” on page
4-7). For example, if you are modeling a plant for control-design applications,
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you might prefilter the data to specifically enhance frequencies around the
desired closed-loop bandwidth.

Prefiltering the input and output data through the same filter does not change
the input-output relationship for a linear system. However, prefiltering does
change the noise characteristics and affects the estimated model of the system.

To get a reliable noise model, we recommend that you avoid prefiltering
the data. Instead, set the Focus property of the estimation algorithm to
Simulation. For more information, see the Algorithm Properties reference
pages.

Note When you prefilter during model estimation, the filtered data is used to
only model the input-to-output dynamics. However, the disturbance model is
calculated from the unfiltered data.

Filtering Data Using System Identification Tool
System Identification Tool lets you filter time-domain, frequency-domain,
or frequency-response data by enhancing or selecting specific passbands.
The Tool filters time-domain data using a fifth-order Butterworth filter. For
frequency-domain and frequency-response data, filtering is equivalent to
selecting specific data ranges.

This section discusses the following topics:

• “Filtering Time-Domain Data” on page 4-32

• “Filtering Frequency-Domain or Frequency-Response Data” on page 4-34

Filtering Time-Domain Data
To create a filtered data set:

1 Import time-domain data into the System Identification Tool, as described
in “Creating Data Sets in the System Identification Tool” on page 3-13.

2 Drag the data set you want you want to filter to the Working Data area.
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3 Select Preprocess > Filter. By default, this selection shows a periodogram
of the input and output spectra (see etfe).

Note To display smoothed spectral estimates instead of the periodogram,
select Options > Spectral analysis. This spectral estimate is computed
using spa and your previous settings in the Spectral Model dialog box. To
change these settings, select Estimate > Spectral model in the System
Identification Tool window, and specify new model settings.

4 If your data contains multiple I/O channels, in the Channel menu, select
the channel pair you want to view. Although you view only one channel pair
at a time, the filter applies to all I/O channels in this data set.

5 Select the data of interest using one of the following ways:

• Graphically — Draw a rectangle with the mouse on either the
input-signal or the output-signal plot to select the desired frequency
interval. Your selection is displayed on both plots regardless of the plot
on which you draw the rectangle. The Range field is updated to match
the selected region. If you need to clear your selection, right-click the
plot.

• By specifying the Range — Edit the beginning and the end frequency
values.

Example: 8.5 20.0 (rad/s).

Tip To change the frequency units from rad/s to Hz, select
Style > Frequency (Hz). To change the frequency units from Hz to
rad/s, select Style > Frequency (rad/s).

6 In the Range is list, select one of the following:

• Pass band — Allows data in the selected frequency range.

• Stop band — Removes data in the selected frequency range.

7 Click Filter to preview the filtered results. If you are satisfied, go to step 8.
Otherwise, return to step 5.
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8 In the Data name field, enter the name of the data set containing the
selected data.

9 Click Insert to save the selection as a new data set and add it to the Data
Board.

10 To select another range, repeat steps 5–9.

Filtering Frequency-Domain or Frequency-Response Data
To select a range of data, which is the equivalent of filtering frequency-domain
and frequency-response data:

1 Import data into the System Identification Tool, as described in “Creating
Data Sets in the System Identification Tool” on page 3-13.

2 Drag the data set you want you want to filter to the Working Data area.

3 Select Preprocess > Select range. This selection displays one of the
following plots:

• Frequency-domain data — Plot shows the absolute of the squares of the
input and output spectra.

• Frequency-response data — Top axes show the frequency response
magnitude equivalent to the ratio of the output to the input), and the
bottom axes show the ratio of the input signal to itself, which has the
value of 1 at all frequencies.

4 If your data contains multiple I/O channels, in the Channel menu, select
the channel pair you want to view. Although you view only one channel pair
at a time, the filter applies to all I/O channels in this data set.

5 Select the data of interest using one of the following ways:

• Graphically — Draw a rectangle with the mouse on either the
input-signal or the output-signal plot to select the desired frequency
interval. Your selection is displayed on both plots regardless of the plot
on which you draw the rectangle. The Range field is updated to match
the selected region.

If you need to clear your selection, right-click the plot.
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• By specifying the Range — Edit the beginning and the end frequency
values.

Example: 8.5 20.0 (rad/s).

Tip If you need to change the frequency units from rad/s to Hz, select
Style > Frequency (Hz). To change the frequency units from Hz to
rad/s, select Style > Frequency (rad/s).

6 In the Range is list, select one of the following:

• Pass band — Allows data in the selected frequency range.

• Stop band — Removes data in the selected frequency range.

7 In the Data name field, enter the name of the data set containing the
selected data.

8 Click Insert. This action saves the selection as a new data set and adds
it to the Data Board.

9 To select another range, repeat steps 5–8.

Filtering Data Using the idfilt Function
Use idfilt to apply passband and other custom filters to a time-domain or
a frequency-domain iddata object.

In general, you can specify any custom filter. Use this syntax to filter an
iddata object data using the filter called filter:

fdata = idfilt(data,filter)

This section discusses the following topics:

• “Simple Passband Filter” on page 4-36

• “Defining a Custom Filter” on page 4-36

• “Causal and Noncausal Filters” on page 4-37
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Simple Passband Filter
In the simplest case, you can specify a passband filter for time-domain data
using the following syntax:

fdata = idfilt(data,[wl wh])

In this case, w1 and wh represent the low and high frequencies of the passband,
respectively.

You can specify several passbands, as follows:

filter=[[w1l,w1h];[ w2l,w2h]; ....;[wnl,wnh]]

The filter is an n-by-2 matrix, where each row defines a passband in radians
per second.

To define a stopband between ws1 and ws2, use

filter = [0 ws1; ws2 Nyqf]

where, Nyqf is the Nyquist frequency.

For time-domain data, the passband filtering is cascaded Butterworth filters
of specified order. The default filter order is 5. The Butterworth filter is the
same as butter in Signal Processing Toolbox. For frequency-domain data,
select the indicated portions of the data to perform passband filtering.

Defining a Custom Filter
You can define a general single-input and single-output (SISO) system for
filtering time-domain or frequency-domain data. For frequency-domain only,
you can specify the (nonparametric) frequency response of the filter.

You use this syntax to filter an iddata object data using a custom filter
specified by filter:

fdata = idfilt(data,filter)

filter can be also any of the following:

filter = idm
filter = {num,den}
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filter = {A,B,C,D}

idm is a SISO idmodel or LTI object. For more information about LTI objects,
see the Control Systems Toolbox documentation.

{num,den} defines the filter as a transfer function as a cell array of numerator
and denominator filter coefficients.

{A,B,C,D} is a cell array of SISO state-space matrices.

Specifically for frequency-domain data, you specify the frequency response
of the filter:

filter = Wf

Here, Wf is a vector of real or complex values that define the filter
frequency response, where the inputs and outputs of data at frequency
data.Frequency(kf) are multiplied by Wf(kf). Wf is a column vector with
the length equal to the number of frequencies in data.

When data contains several experiments, Wf is a cell array with the length
equal to the number of experiments in data.

Causal and Noncausal Filters
For time-domain data, the filtering is causal by default. Causal filters
typically introduce a phase shift in the results. To use a noncausal zero-phase
filter (corresponding to filtfilt in Signal Processing Toolbox), specify a
third argument in idfilt:

fdata = idfilt(data,filter,'noncausal')

For frequency-domain data, the signals are multiplied by the frequency
response of the filter. With the filters defined as passband filters, this
calculation gives ideal, zero-phase filtering (“brick wall filters”). Frequencies
that have been assigned zero weight by the filter (outside the passband or
via frequency response) are removed.

When you apply idfilt to an idfrd data object, the data is first converted
to a frequency-domain iddata object (see page “Transforming Between
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Frequency-Domain and Frequency-Response Data” on page 3-68). The result
is an iddata object.
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Selecting Data
When your data set contains undesirable features, such as missing data,
outliers, level changes, and disturbances, you can select one or more portions
of the data that are suitable for identification and exclude the rest. Later you
can merge several data segments into a single multiexperiment data set and
identify an average model. For more information, see “Creating Data Sets in
the System Identification Tool” on page 3-13 or “Creating iddata Objects”
on page 3-31.

If you only have one data set, we recommend that you split it into two
portions. Then, use one portion for model estimation and use the other portion
for model validation. Both portions of the data set must be contain enough
samples to adequately represent the system and the inputs must provide
suitable excitation to the system.

Note Selecting Preprocess > Quick start performs the following actions
simultaneously: 1) remove the mean value from each channels, 2) split data
into two halves, 3) specify the first half as estimation data for models (or
Working Data), and 4) specify the second half as Validation Data.

This section discusses the following topics:

• “Selecting Data in the System Identification Tool” on page 4-39

• “Selecting Data in the MATLAB Command Window” on page 4-41

Selecting potions of frequency-domain data is equivalent to filtering the data.
For more information about filtering, see “Filtering the Data” on page 4-31.

Selecting Data in the System Identification Tool
System Identification Tool lets you view time-domain or frequency-domain
data on a plot and select the regions of interest. Selecting data in the
frequency domain is equivalent to passband-filtering the data.

After you select portions of the data, you can specify to use one data segment
for estimating models and use the other data segment for validating models.
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For more information, see “Specifying Working Data and Validation Data”
on page 2-23.

This sections contains the following topics:

• “Selecting a Range for Time-Domain Data” on page 4-40

• “Selecting a Range of Frequency-Domain Data” on page 4-41

Selecting a Range for Time-Domain Data
You can select a range of data values on a time plot and save it as a new data
set in the System Identification Tool.

Note You cannot extract data in data sets containing multiple experiments.
For more information about multiexperiment data, see “Working with
Multiexperiment Data” on page 3-21.

To extract a subset of time-domain data and save it as a new data set:

1 Import time-domain data into the System Identification Tool, as described
in “Creating Data Sets in the System Identification Tool” on page 3-13.

2 Drag the data set you want to subset to the Working Data area.

3 If your data contains multiple I/O channels, in the Channel menu, select
the channel pair you want to view. The upper plot corresponds to the input
signal, and the lower plot corresponds to the output signal.

Although you view only one I/O channel pair at a time, your data selection
is applied to all channels in this data set.

4 Select the data of interest in one of the following ways:

• Graphically — Draw a rectangle on either the input-signal or the
output-signal plot with the mouse to select the desired time interval.
Your selection appears on both plots regardless of the plot on which you
draw the rectangle. The Time span and Samples fields are updated to
match the selected region.
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• By specifying the Time span — Edit the beginning and the end times in
seconds. The Samples field is updated to match the selected region.

Example: 28.5 56.8

• By specifying the Samples range — Edit the beginning and the end
indices of the sample range. The Time span field is updated to match
the selected region.

Example: 342 654

To clear your selection, click Revert.

5 In the Data name field, enter the name of the data set containing the
selected data.

6 Click Insert. This action saves the selection as a new data set and adds
it to the Data Board.

7 To select another range, repeat steps 4-6.

Selecting a Range of Frequency-Domain Data
Selecting a range of values in frequency domain is equivalent to filtering the
data in System Identification Toolbox. For more information on data filtering,
see “Filtering Frequency-Domain or Frequency-Response Data” on page 4-34.

Selecting Data in the MATLAB Command Window
Selecting ranges of data values is equivalent to subreferencing the data.

For more information about subreferencing time-domain and
frequency-domain data stored in iddata objects, see “Subreferencing iddata
Objects” on page 3-39.

For more information about subreferencing frequency-response data, see
“Subreferencing idfrd Objects” on page 3-55.
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Handling Complex-Valued Data
System Identification Toolbox successfully handles complex data with several
exceptions.

This section discusses the following topics:

• “Supported Operations for Complex Data” on page 4-42

• “Manipulating Complex iddata Signals” on page 4-42

Supported Operations for Complex Data
System Identification Toolbox estimation routines support complex data. For
example, the following estimation functions estimate complex models from
complex data: ar, armax, arx, bj, covf, ivar, iv4, oe, pem, spa, and n4sid

Model transformation routines, such as freqresp, zpkdata, work for
complex-valued models. However, they do not provide pole-zero confidence
regions. For complex models, the parameter variance-covariance information
refers to the complex-valued parameters and the accuracy of the real and
imaginary is not computed separately.

The display functions compare and plot also work with complex-valued data
and models, but only show the absolute values of the signals. To plot the
real and imaginary parts of the data separately, use plot(real(data)) and
plot(imag(data)), respectively.

Manipulating Complex iddata Signals
If the iddata object data contains complex values, you can use the following
functions to process the complex data and create a new iddata object:

Function Description

abs(data) Absolute value of complex signals in iddata object.

angle(data) Phase angle (in radians) of each complex signals in
iddata object.
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Function Description

complex(data) For time-domain data, this function makes the iddata
object complex—even when the imaginary parts are
zero. For frequency-domain data that only stores
the values for nonnegative frequencies, such that
realdata(data)=1, it adds signal values for negative
frequencies using complex conjugation.

imag(data) Selects the imaginary parts of each signal in iddata
object.

isreal(data) 1 when data (time-domain or frequency-domain)
contains only real input and output signals, and returns
0 when data (time-domain or frequency-domain)
contains complex signals.

real(data) Real part of complex signals in iddata object.

realdata(data) Returns a value of 1 when data is a real-valued,
time-domain signal, and returns 0 otherwise.

For example, suppose that you create a frequency-domain iddata object Datf
by applying fft to a real-valued time-domain signal to take the Fourier
transform of the signal. The following is true for Datf:

isreal(Datf) = 0
realdata(Datf) = 1
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5 Estimating Linear Nonparametric and Parametric Models

Overview of Linear Nonparametric and Parametric Models
System Identification Toolbox lets you estimate linear nonparametric and
parametric models to fit input-output data or time-series data.

System identification is typically a trial-and-error process, where you estimate
and validate different types of models until you find the simplest model that
adequately captures the dynamics of your system.

This section discusses the following topics:

• “Definitions of Nonparametric and Parametric Models” on page 5-2

• “Supported Models” on page 5-2

• “Before You Begin” on page 5-3

Definitions of Nonparametric and Parametric Models
Nonparametric models consist of data tables or curves and are not represented
by a compact mathematical formula with adjustable parameters. Thus,
nonparametric models do not impose a structure on your system. Typical
nonparametric methods for linear models include correlation analysis, which
estimates the impulse or step response of the system, and spectral analysis,
which estimates the frequency response (periodogram) of the system.

Parametric models have a well-defined mathematical structure, and this
structure is fit to the input-output data by adjusting the coefficient values, or
model parameters. Parametric identification methods use numerical search
to find the parameter values that correspond to the best agreement between
simulated and measured output.

Supported Models
The following types of linear nonparametric and parametric models are
supported by System Identification Toolbox:

• “Low-Order, Continuous-Time Process Models” on page 5-4

• “Correlation Analysis Models” on page 5-23

• “Spectral Analysis Models” on page 5-31
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• “Black-Box Polynomial Models” on page 5-42

• “State-Space Models” on page 5-67

• “Time-Series Models” on page 5-94

This User’s Guide describes how to estimate these model both in the System
Identification Tool GUI and in the MATLAB Command Window.

Before You Begin
Before you begin estimating models, import the data into MATLAB, and
represent the data using System Identification Toolbox format. If you are
using the System Identification Tool, then import the data into the GUI to
make the data available to System Identification Toolbox. However, if you
prefer to work in the MATLAB Command Window, then represent your data
as an iddata or idfrd object. For more information about representing your
data for system identification, see Chapter 3, “Representing Data for System
Identification”.

After representing data in System Identification Toolbox format, plot the data
on a time plot or an estimated frequency response plot to examine the data
features. You can also use the advice command to analyze the data for the
presence of constant offsets and trends, delay, feedback, and nonlinearity, and
determine the order of excitation persistence.

You can preprocess your data by removing offsets and linear trends,
interpolating missing values, filtering to emphasize a specific frequency
range, or resampling using a different time interval.

For more information about types of available date plots and
data-preprocessing operations, see Chapter 4, “Plotting and Preprocessing
Data”.
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Low-Order, Continuous-Time Process Models
Continuous-time process models can contain up to three poles, one zero, one
integrator, and a time delay. You can use such model structures to estimate
the static gain, the time delay before the system output responds to the input,
and the characteristic time constants associated with poles and zeros.

Such parametric models are popular for describing system dynamics in many
industries and apply to various production environments. The primary
advantages of these models are that they provide delay estimation, and the
model coefficients have a physical interpretation.

You can estimate low-order (up to third order), continuous-time transfer
functions from data with the following characteristics:

• Time- or frequency-domain iddata or idfrd data object.

• Real data, or complex data in time domain only.

• Single-output data.

For a tutorial on estimating continuous-time process models in the GUI, see
“Estimating Continuous-Time Process Models Using the System Identification
Tool” in Getting Started with System Identification Toolbox.

This section describes the procedures required to estimate process models in
the System Identification Tool GUI and the MATLAB Command Window. It
includes the following topics:

• “Definition of a Process Model” on page 5-5

• “Estimating Process Models in the GUI” on page 5-6

• “Using pem to Estimate Process Models” on page 5-11

• “Specifying the Process-Model Structure” on page 5-17

• “Estimating Multiple-Input Models” on page 5-18

• “Choosing the Disturbance Model Structure” on page 5-19

• “Setting the Frequency-Weighing Focus” on page 5-20

• “Specifying the Initial States” on page 5-21
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After estimating the model, see Chapter 9, “Plotting and Validating Models”
to validate the model.

Definition of a Process Model
In general, a linear system is characterized by a transfer function G, which
takes the input u to the output y:

y Gu=

For a continuous-time system, G relates the Laplace transforms of the input
U(s) and the output Y(s):

Y s G s U s( ) ( ) ( )=

The structure of a continuous-time process model describe system dynamics
in terms of one or more of the following elements:

• Static gain Kp.

• One or more time constants Tpk. For complex poles, the time constant is

called Tω —equal to the inverse of the natural frequency—and the damping

coefficient is ζ (zeta).

• Process zero Tz.

• Possible time delay Td before the system output responds to the input
(dead time).

• Possible enforced integration.
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You use the System Identification Tool to specify different process-model
structures by varying the number of poles, adding an integrator, or adding or
removing a time delay or zero. The highest model order you can specify in this
Toolbox is 3, and the poles can be real or complex (underdamped modes).

For example, the following model structure is a first-order continuous-time
process model, where K is the static gain, Tp1 is a time constant, and Td is the
input-to-output delay:

G s
K
sT

e
p

sTd( ) =
+

−
1 1

Estimating Process Models in the GUI
The following procedure describes how to estimate a process model in the
System Identification Tool and assumes that you already have the appropriate
data in the Data Board.

5-6



Low-Order, Continuous-Time Process Models

1 In the System Identification Tool window, select Estimate > Process
models to open the Process Models dialog box.

2 If your model contains multiple inputs, select the input channel in the
Input list. This list only appears when you have multiple inputs. For more
information, see “Estimating Multiple-Input Models” on page 5-18.

3 In the Model Transfer Function area, specify the model structure using
the following options:

• Under Poles, select the number of poles, and then select All real or
Underdamped.

Note You need at least two poles to allow underdamped modes
(complex-conjugate pair).
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5 Estimating Linear Nonparametric and Parametric Models

• Select the Zero check box to include a zero—a numerator term other
than a constant, or clear the check box to exclude the zero.

• Select the Delay check box to include a delay, or clear the check box
to exclude the delay.

• Select the Integrator check box to include an integrator (self-regulating
process), or clear the check box to exclude the integrator.

The Parameter area shows as many active parameters as you included in
the model structure.

Note By default, the model Name is set to the acronym that reflects the
model structure, as described in “Specifying the Process-Model Structure”
on page 5-17.

4 In the Initial Guess area, select Auto-selected to calculate the initial
parameter values for the estimation. The Initial Guess column in the
Parameter table displays Auto. If you do not have a good guess for the
parameter values, Auto works better than entering an ad hoc value.
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5 (Optional) If you approximately know a parameter value, enter this value
in the Initial Guess column of the Parameter table. The estimation
algorithm uses this value as a starting point. If you know a parameter
value exactly, enter this value in the Initial Guess column, and also select
the corresponding Known check box in the table to fix its value.

If you know the range of possible values for a parameter, enter these values
into the corresponding Bounds field to help the estimation algorithm.
Otherwise, you should keep the default values.

For example, the following shows that the delay value Td is fixed at 2 s
and is not estimated.

6 In the Disturbance Model list, select one of the available options. For
more information about each option, see “Choosing the Disturbance Model
Structure” on page 5-19.

7 In the Focus list, select how to weigh the relative importance of the fit at
different frequencies. For more information about each option, see “Setting
the Frequency-Weighing Focus” on page 5-20.
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8 In the Initial state list, specify how you want the algorithm to treat initial
states. For more information about the available options, see “Specifying
the Initial States” on page 5-21.

Tip If you get a bad fit, you might try setting a specific method for handling
initial states, rather than choosing it automatically.

9 In the Covariance list, select Estimate if you want the algorithm to
compute parameter uncertainties. Effects of such uncertainties are
displayed on plots as model confidence regions.

To omit estimating uncertainty, select None. Skipping uncertainty
computation might reduce computation time for complex models and large
data sets.

10 In the Model Name field, edit the name of the model or keep the default.
The name of the model should be unique in the Model Board.

11 To view the estimation progress in the MATLAB Command Window, select
the Trace check box. During estimation, the following information is
displayed for each iteration:

• Loss function — Equals the determinant of the estimated covariance
matrix of the input noise.

• Parameter values — Values of the model structure coefficients you
specified.

• Search direction — Change in parameter values from the previous
iteration.

• Fit improvements — Shows the actual versus expected improvements in
the fit.

12 Click Estimate to add this model to the Model Board in the System
Identification Tool window.

13 To stop the search and save the results after the current iteration has been
completed, click Stop Iterations. To continue iterations from the current
model, click the Continue iter button to assign current parameter values
as initial guesses for the next search.
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14 To refine the current estimate, click the Value —> Initial Guess button
to assign current parameter values as initial guesses for the next search,
edit the Model Name field, and click Estimate.

15 To plot the model, select the appropriate check box in the Model Views
area of the System Identification Tool window. For more information about
working with plots and validating models, see Chapter 9, “Plotting and
Validating Models”.

If your model is not sufficiently accurate, try another model structure.

You can export the model to the MATLAB workspace for further analysis by
dragging it to the To Workspace rectangle in the System Identification Tool
window. For more information about working with models, see Chapter 10,
“Postprocessing and Using Estimated Models”.

Using pem to Estimate Process Models
You can estimate process models using the iterative estimation method pem
that minimizes the prediction errors to obtain maximum likelihood estimates.
You can also use pem to refine parameter estimates of an existing process
model, as described in “Refining Models” on page 1-46.

The resulting models are stored as idproc model objects.

You can use the following general syntax to both configure and estimate
process models:

m = pem(data,mod_struc,'Property1',Value1,...,
'PropertyN',ValueN)

data is the estimation data and mod_struc is a string that represents the
process model structure, as described in “Specifying the Process-Model
Structure” on page 5-17.
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Note You do not need to construct the model object using idproc before
estimation unless you want to specify initial parameter guesses or fixed
parameter values, as described in “Example – Using pem to Estimate Process
Models With Fixed Parameters” on page 5-14.

The property-value pairs specify any model properties that configure the
estimation algorithm and the initial conditions. For more information on
accessing and setting model properties, see “Model Properties” on page 1-30.

Note You can specify all property-value pairs in pem as a simple,
comma-separated list without worrying about the hierarchy of these
properties in the idproc model object.

For detailed information about pem and idproc, see the corresponding
reference pages.

The following examples demonstrate how to estimate process models in the
MATLAB Command Window:

• “Example – Using pem to Estimate Process Models with Free Parameters”
on page 5-12

• “Example – Using pem to Estimate Process Models With Fixed Parameters”
on page 5-14

Example – Using pem to Estimate Process Models with Free
Parameters
This example demonstrates how to estimate all of the parameters of a
first-order process model:

G s
K
sT

e
p

sTd( ) =
+

−
1 1

This process has two inputs and the response from each input is estimated by
a first-order process model.
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In this example, all parameters are free to vary. Use the following commands
to estimate a model m from sample data:

% Load sample data
load co2data
% Sampling interval is 0.5 min (known)
Ts = 0.5;
% Split data set into estimation data ze
% and validation data zv
ze = iddata(Output_exp1,Input_exp1,Ts,...

'TimeUnit','min');
zv = iddata(Output_exp2,Input_exp2,Ts,...

'TimeUnit','min');
% Estimate model with one pole and a delay
m = pem(ze,'P1D')

MATLAB responds with the following output:

Process model with 2 inputs:
y = G_1(s)u_1 + G_2(s)u_2
where

K
G_1(s) = ---------- * exp(-Td*s)

1+Tp1*s

with K = -3.2168
Tp1 = 23.033
Td = 10.101

K
G_2(s) = ---------- * exp(-Td*s)

1+Tp1*s

with K = 9.9877
Tp1 = 2.0314
Td = 4.8368
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Use the get command to get the value of any model parameter. Alternatively,
you can use dot notation. For example, to get the Value field in the K structure,
type the following command:

m.K.value

Example – Using pem to Estimate Process Models With Fixed
Parameters
If you know the values of certain parameters and want to omit estimating
these values, you must first construct the idproc model object and then
specify the fixed parameters.

Use the following commands to prepare the data and construct a process
model with one pole and a delay:

% Load sample data
load co2data
% Sampling interval is 0.5 min (known)
Ts = 0.5;
% Split data set into estimation data ze
% and validation data zv
ze = iddata(Output_exp1,Input_exp1,Ts,...

'TimeUnit','min');
zv = iddata(Output_exp2,Input_exp2,Ts,...

'TimeUnit','min');
mod=idproc('P1D')
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MATLAB responds with the following output:

Process model with transfer function
K

G(s) = ---------- * exp(-Td*s)
1+Tp1*s

with K = NaN
Tp1 = NaN
Td = NaN

This model was not estimated from data.

The model parameters K, Tp1, and Td are assigned NaN values, which means
that the parameters have not yet been estimated from the data.

All process-model parameters are structures with the following fields:

• status field specifies whether to estimate the parameter, or keep the
initial value fixed (do not estimate), or set the value to zero. This field can
have the values 'estimate', 'fixed', or 'zero'. For more information,
see “Specifying the Initial States” on page 5-21.

• min field specifies the minimum bound on the parameter.

• max field specifies the maximum bound on the parameter.

• value field specifies the numerical value of the parameter, if known.

To set the value of K to 12 and keep it fixed, use the following commands:

mod.K.value=12;
mod.K.status='fixed';

Note mod is defined for one input. This model is automatically adjusted
to have a duplicate for each input.

To estimate Tp1 and Td only, use the following command:

mod_proc=pem(ze,mod)
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MATLAB returns the following result:

Process model with 2 inputs:
y = G_1(s)u_1 + G_2(s)u_2
where

K
G_1(s) = ---------- * exp(-Td*s)

1+Tp1*s

with K = 12
Tp1 = 7.0998e+007
Td = 15

K
G_2(s) = ---------- * exp(-Td*s)

1+Tp1*s

with K = 12
Tp1 = 3.6962
Td = 3.817

In this case, the value of K is fixed at 12, but Tp1 and Td are estimated.
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If you prefer to specify parameter constraints directly in the estimator syntax,
the following table provides examples of pem commands.

Action Syntax

Fix the value of K to 12.
m=pem(ze,'p1d','k','fix','k',12)

Initialize K for the iterative search
without fixing this value. m=pem(ze,'p1d','k',12)

Constrain the value of K between
3 and 4. m=pem(ze,'p1d','k',...

{'min',3},'k',{'max',4})

Specifying the Process-Model Structure
This section describes how to specify the model structure in the estimation
procedures “Estimating Process Models in the GUI” on page 5-6 and “Using
pem to Estimate Process Models” on page 5-11.

In the System Identification Tool GUI. Specify the model structure by
selecting the number of real or complex poles, and whether to include a zero,
delay, and integrator. The resulting transfer function is displayed in the
Process Models dialog box.

In the MATLAB Command Window. Specify the model structure using an
acronym that includes the following letters and numbers:

• (Required) P for process model

• (Required) 0, 1, 2 or 3 for the number of poles.

• (Optional) D to include a time-delay term e sTd− .

• (Optional) Z to include a process zero (numerator term).

• (Optional) U to indicate possible complex-valued (underdamped) poles.

• (Optional) I to indicated enforced integration.
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Typically, you specify the model-structure acronym as a string argument in
the estimation function pem:

• pem(data,'P1D') to estimate the following structure:

G s
K
sT

e
p

sTd( ) =
+

−
1 1

• pem(data,'P2ZU') to estimate the following structure:

G s
K sT

s T s T

p z

w w
( ) =

+( )
+ +

1

1 2 2 2ζ

• pem(data,'P0ID') to estimate the following structure:

G s
K

s
ep sTd( ) = −

• pem(data,'P3Z') to estimate the following structure:

G s
K sT

sT sT sT
p z

p p p
( ) =

+( )
+( ) +( ) +( )

1

1 1 11 2 3

For more information about estimating in the MATLAB Command Window,
see “Using pem to Estimate Process Models” on page 5-11.

Estimating Multiple-Input Models
If your model contains multiple inputs, you can specify whether to estimate
the same transfer function for all inputs, or a different transfer for each
input. The information in this section supports the estimation procedures
“Estimating Process Models in the GUI” on page 5-6 and “Using pem to
Estimate Process Models” on page 5-11.

In the System Identification Tool GUI. To fit a data set with multiple
inputs in the Process Models dialog box, configure the process model settings
for one input at a time. When you finish configuring the model and the
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estimation settings for one input, select a different input in the Input
Number list.

If you want the same transfer function to apply to all inputs, select the Same
structure for all channels check box. To apply a different structure to each
channel, leave the Same structure for all channels check box clear, and
create a different transfer function for each input.

In the MATLAB Command Window. Specify the model structure as a cell
array of acronym strings in the estimation function pem. For example, use this
command to specify the first-order transfer function for the first input, and a
second-order model with a zero and an integrator for the second input:

m = idproc({'P1','P2ZI'})
m = pem(data,m)

To apply the same structure to all inputs, define a single structure in idproc.

Choosing the Disturbance Model Structure
This section describes how to specify a noise model in the estimation
procedures “Estimating Process Models in the GUI” on page 5-6 and “Using
pem to Estimate Process Models” on page 5-11.

In addition to the transfer function G, a linear system can include an additive
noise term He, as follows:

y Gu He= +

where e is white noise.

You can estimate only the dynamic model G, or estimate both the dynamic
model and the disturbance model H. For process models, H is a rational
transfer function C/D, where the C and D polynomials for a first- or
second-order ARMA model.

In the GUI. To specify whether to include or exclude a noise model in
the Process Models dialog, select one of the following options from the
Disturbance Model list:
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• None — The algorithm does not estimate a noise model (C=D=1). This
option also sets the Focus to Simulation.

• Order 1 — Estimates a noise model as a continuous-time, first-order
ARMA model.

• Order 2 — Estimates a noise model as a continuous-time, second-order
ARMA model.

In the MATLAB Command Window. Specify the disturbance model as an
argument in the estimation function pem. For example, use this command to
estimate a first-order transfer function and a first-order noise model:

pem(data,'P1D','DisturbanceModel','ARMA1')

Tip You can type 'dis' instead of 'DisturbanceModel'.

For a complete list of values for the DisturbanceModel model property, see
the idproc reference pages.

Setting the Frequency-Weighing Focus
You can specify how the estimation algorithm weighs the fit at various
frequencies. This information supports the estimation procedures “Estimating
Process Models in the GUI” on page 5-6 and “Using pem to Estimate Process
Models” on page 5-11.

In the System Identification Tool GUI. Set the Focus to one of the
following options:

• Prediction — Uses the inverse of the noise model H to weigh the relative
importance of how closely to fit the data in various frequency ranges.
Corresponds to minimizing one-step-ahead prediction, which typically
favors the fit over a short time interval. Optimized for output prediction
applications.

• Simulation — Uses the input spectrum to weigh the relative importance of
the fit in a specific frequency range. Does not use the noise model to weigh
the relative importance of how closely to fit the data in various frequency
ranges. Optimized for output simulation applications.
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• Stability — Behaves the same way as the Prediction option, but also
forces the model to be stable. For more information on model stability,
see “Unstable Models” on page 9-66.

• Filter — Specify a custom filter to open the Estimation Focus dialog box,
where you can enter a filter, as described in “Simple Passband Filter” on
page 4-36 or “Defining a Custom Filter” on page 4-36. This prefiltering
applies only for estimating the dynamics from input to output. The
disturbance model is determined from the estimation data.

In the MATLAB Command Window. Specify the focus as an argument
in the estimation function pem using the same options as in the GUI. For
example, use this command to optimize the fit for simulation and estimate
a disturbance model:

pem(data,'P1D','dist','arma2','Focus','Simulation')

Specifying the Initial States
Because the process models are dynamic, you need initial states that capture
past input properties. Thus, you must specify how the iterative algorithm
treats initial states. This information supports the estimation procedures
“Estimating Process Models in the GUI” on page 5-6 and “Using pem to
Estimate Process Models” on page 5-11.

In the System Identification Tool GUI. Set the Initial state to one of
the following options:

• Zero — Sets all initial states to zero.

• Estimate — Treats the initial states as an unknown vector of parameters
and estimates these states from the data.

• Backcast — Estimates initial states using a backward filtering method
(least-squares fit).

• U-level est — Estimates both the initial states and the InputLevel
model property that represents the input offset level. For multiple inputs,
the input level for each input is estimated individually. Use if you included
an integrator in the transfer function.
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• Auto — Automatically chooses one of the preceding options based on the
estimation data. If initial states have negligible effect on the prediction
errors, the initial states are set to zero to optimize algorithm performance.

In the MATLAB Command Window. Specify the initial states as an
argument in the estimation function pem using the same options as in the
GUI. For example, use this command to estimate a first-order transfer
function and set the initial states to zero:

m=pem(data,'P1D','InitialState','zero')

For a complete list of values for the InitialState model property, see the
idproc reference pages.
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Correlation Analysis Models
Correlation analysis is a nonparametric estimate of impulse and step response
of dynamic systems, which computes a finite impulse response (FIR) model
from the data. It assumes a linear system and does not require a specific
model structure.

You can estimate correlation analysis models from data with the following
characteristics:

• Real or complex time-domain iddata object. To learn more about
estimating time-series models, see “Time-Series Models” on page 5-94.

• Frequency-domain iddata or idfrd object with the sampling interval T≠0.

• Single- or multiple-output data.

This section describes the procedures required to estimate correlation-analysis
models in the System Identification Tool GUI and the MATLAB Command
Window. It include the following topics:

• “Definition of Correlation Analysis” on page 5-23

• “Estimating Correlation Models in the GUI” on page 5-25

• “Using impulse and step to Estimate Correlation Models” on page 5-26

• “Using impulse and step to Compute Model Data” on page 5-27

• “Identifying Delay from Impulse-Response Plots” on page 5-28

After estimating the model, see Chapter 9, “Plotting and Validating Models”
to validate the model.

Definition of Correlation Analysis
To better understand the algorithm underlying correlation analysis, consider
the following description of a dynamic system:

y t G q u t v t( ) ( ) ( ) ( )= +

5-23



5 Estimating Linear Nonparametric and Parametric Models

where u(t) and y(t) are the input and output signals, respectively. v(t) is the
additive noise term. G(q) is the transfer function of the system. The G(q)u(t)
notation represents the following operation:

G q u t g k u t k
k

( ) ( ) ( ) ( )= −
=

∞

∑
1

q is the shift operator, defined by the following equation:

G q g k q q u t u tk

k

( ) ( ) ( ) ( )= = −−

=

∞
−∑

1

1 1      

Impulse response is the response to an impulse input u(t). That is, u(t)=1
when t=0 and u(t)=0 when t>0 for discrete-time data. Step response is the
response to a step input.

For impulse response, the algorithm estimates impulse response coefficients
g for both the single- and multiple-output data. The impulse response is
estimated as a high-order, noncausal FIR model:

y t g m u t m g u t g u t
g u t

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) (

= − + + + − + +
+ −

K 1 1 0
1          11) ( ) ( )+ + −K g n u t n

The estimation algorithm prefilters the data such that the input is as white
as possible. It then computes the correlations from the prefiltered data to
obtain the FIR coefficients.

g is also estimated for negative lags, which takes into account any noncausal
effects from input to output. Noncausal effects can result from feedback. The
coefficients are computed using the least squares method.

For a multiple-input or multiple-output system, the impulse response gk is an
ny-by-nu matrix, where ny is the number of outputs and nu is the number
of inputs. The i-jth element of the impulse response matrix describes the
behavior of the ith output after an impulse in the jth input.
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Estimating Correlation Models in the GUI
The following procedure describes how to estimate impulse- and step-response
models in the System Identification Tool using correlation analysis. This
procedure assumes that you already have the appropriate data in the Data
Board.

1 In the System Identification Tool window, select Estimate > Correlation
models to open the Correlation Model dialog box.

2 In the Time span (s) field, specify a scalar value as the time interval over
which the impulse or step response is calculated. For a scalar time span T,
the resulting response is plotted from -T/4 to T.

Tip You can also enter a 2–D vector in the format [min_value max_value].

3 In the Order of whitening filter, specify the filter order.

The prewhitening filter is determined by modeling the input as an
Auto-Regressive (AR) process of order N. The algorithm applies a filter of
the form A(q)u(t)=u_F(t). That is, the input u(t) is subjected to an FIR
filter A to produce the filtered signal u_F(t). Prewhitening the input by
applying a whitening filter before estimation might improve the quality of
the estimated impulse response g.

The order of the prewhitening filter, N, is the order of the A filter. N equals
the number of lags. The default value of N is 10, which you can also specify
as [].

4 In the Model Name field, enter the name of the correlation analysis model.
The name of the model should be unique in the Model Board.

5 Click Estimate to add this model to the Model Board in the System
Identification Tool window.

6 In the Correlation Model dialog box, click Close.

7 To view the transient response plot, select the Transient resp check box
in the System Identification Tool window. For more information about
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working with this plot and selecting to view impulse- versus step-response,
see “Impulse and Step Response Plots” on page 9-21.

You can export the model to the MATLAB workspace for further analysis by
dragging it to the To Workspace rectangle in the System Identification Tool
window. For more information about continuing to work with models in the
MATLAB workspace, see Chapter 10, “Postprocessing and Using Estimated
Models”.

Using impulse and step to Estimate Correlation
Models
You can use impulse and step commands to estimate impulse and step
response directly from time- or frequency-domain data using correlation
analysis. Both impulse and step produce the same FIR model.

Note cra is an alternative method for computing impulse response from
time-domain data only.

The following tables summarize the commands for computing impulse- and
step-response models. The resulting models are stored as idarx model objects
and contain impulse-response coefficients in the model parameter B. For more
information about models objects, see “Working with Model Objects” on page
1-19. For detailed information about these commands, see the corresponding
reference pages.
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Commands for Impulse and Step Response

Command Description Example

impulse Estimates a high-order,
noncausal FIR model
using correlation analysis.

To estimate the model m and plot the impulse
response, use the following syntax:

m=impulse(data,Time,'pw',N)

where data is a single- or multiple-output
time-domain iddata object and Time is a
scalar value representing the time interval
over which the impulse or step response is
calculated. For a scalar time span T, the
resulting response is plotted from -T/4 to T.
'pw' and N is an option property-value pair
that specifies the order N of the prewhitening
filter 'pw'.

step Estimates a high-order,
noncausal FIR model
correlation analysis.

To estimate the model m and plot the step
response, use the following syntax:

step(data,Time)

where data is a single- or multiple-output
time-domain iddata object and Time is the
time span.

Using impulse and step to Compute Model Data
You can use impulse and step commands with output arguments to get
the numerical impulse- and step-response vectors as a function of time,
respectively.

To get the numerical response values, perform the following procedure:

1 Compute the FIR model by applying either impulse or step commands on
the data, as described in “Using impulse and step to Estimate Correlation
Models” on page 5-26.

2 Apply the following syntax on the resulting model:
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% To compute impulse-response data
[y,t,ysd] = impulse(model)
% To compute step-response data
[y,t,ysd] = step(model)

where y is the response data, t is the time vector, and ysd is the standard
deviations of the response.

Identifying Delay from Impulse-Response Plots
You can use impulse-response plots to estimate the input delay, or dead time,
of linear systems. Input delay represents the time it takes for the output to
respond to the input.

In the System Identification Tool GUI. To view the transient response
plot, select the Transient resp check box in the System Identification Tool
window. For example, the following step response plot shows a time delay of
about 0.25 seconds before the system responds to the input.

Step Response Plot
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In the MATLAB Command Window. You can use the impulse command
to plot the impulse response. The time delay is equal to the first positive
peak in the transient response magnitude that is greater than the confidence
region for positive time values.

For example, the following commands create an impulse-response plot with a
1-standard-deviation confidence region:

% Load sample data
load dry2
% Split data into estimation and
% validation data sets
ze = dry2(1:500);
zr = dry2(501:1000);
impulse(ze,'sd',1,'fill')

The resulting figure shows that the first positive peak of the response
magnitude, which is greater than the confidence region for positive time
values, occurs at 0.24 sec.
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Spectral Analysis Models
Spectral analysis is a nonparametric estimate of frequency response.

You can estimate spectral analysis models from data with the following
characteristics:

• Complex or real data.

• Time- or frequency-domain iddata or idfrd data object. To learn more
about estimating time-series models, see “Time-Series Models” on page
5-94.

• Single- or multiple-output data.

This section describes the procedures required to estimate spectral-analysis
models in the System Identification Tool GUI and the MATLAB Command
Window. It include the following topics:

• “Spectral Analysis Algorithm” on page 5-31

• “Estimating Spectral Models in the GUI” on page 5-34

• “Using etfe, spa, and spafdr to Estimate Spectral Models” on page 5-36

• “Selecting the Method for Computing Spectral Models” on page 5-37

• “Specifying the Frequency Resolution” on page 5-38

• “Spectrum Normalization and the Sampling Interval” on page 5-40

After estimating the model, see Chapter 9, “Plotting and Validating Models”
to validate the model.

Spectral Analysis Algorithm
You can estimate the frequency-response function of dynamic systems using
spectral analysis.

To better understand the algorithm underlying spectral analysis, consider the
following description of a linear, dynamic system:

y t G q u t v t( ) ( ) ( ) ( )= +
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where u(t) and y(t) are the input and output signals, respectively. G(q) is
called the transfer function of the system—it takes the input to the output
and captures the system dynamics. The G(q)u(t) notation represents the
following operation:

G q u t g k u t k
k

( ) ( ) ( ) ( )= −
=

∞

∑
1

q is the shift operator, defined by the following equation:

G q g k q q u t u tk

k

( ) ( ) ( ) ( )= = −−

=

∞
−∑

1

1 1      

G(q) that is evaluated on the unit circle, G(q=eiw), is the frequency-response
function.

Together, G(q=eiw) and the output noise spectrum ˆ ( )Φv ω comprise the
frequency-domain description of the system.

According to the Blackman-Turkey approach, the estimated
frequency-response function is given by the following equation:

ˆ
ˆ

ˆG eN
i yu

u

ω ω

ω( ) = ( )
( )

Φ

Φ

In this case, ^ represents approximate quantities. For a derivation of this
equation, see the chapter on nonparametric time- and frequency-domain
methods in System Identification: Theory for the User, Second Edition, by
Lennart Ljung, Prentice Hall, 1999.

The output noise spectrum is given by the following equation:

ˆ ˆ
ˆ

ˆΦ Φ
Φ

Φv y
yu

u
ω ω

ω

ω
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( )
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2
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This equation for the noise spectrum is derived by assuming the linear

relationship y t G q u t v t( ) ( ) ( ) ( )= + , that u(t) is independent of v(t), and the
following relationships between the spectra:

Φ Φ Φy
i

u vG e( ) ( ) ( )ω ω ωω= ( ) +
2

Φ Φyu
i

uG e( ) ( )ω ωω= ( )
where the noise spectrum is given by the following equation:

Φv v
iwR e( ) ( )ω τ

τ

τ≡
=−∞

∞
−∑

ˆ ( )Φ yu ω is the output-input cross-spectrum and
ˆ ( )Φu ω is the input spectrum.

When you use System Identification Toolbox to estimate the frequency
function, the spectral estimation algorithms (such as spa) perform the
following steps:

• Compute the covariances and cross-covariance from u(t) and y(t), as follows:
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• Compute the Fourier transforms of the covariances and the
cross-covariance, as follows:

ˆ ( ) ˆ ( ) ( )

ˆ ( ) ˆ ( ) ( )

Φ

Φ

y y
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M
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u u
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where WM ( )τ is called the lag window with the width M.

• Compute the frequency response function Ĝ eN
iω( ) and the output noise

spectrum ˆ ( )Φv ω

Alternatively, the disturbance v(t) can be described as filtered white noise:

v t H q e t( ) ( ) ( )=

where e(t) is the white noise with variance λ and the noise power spectrum
is given by the following equation:

Φv
iH e( )ω λ ω= ( ) 2

Estimating Spectral Models in the GUI
The following procedure describes how to estimate spectral models in the
System Identification Tool and assumes that you already have the appropriate
data in the Data Board.

1 In the System Identification Tool window, select Estimate > Spectral
models to open the Spectral Model dialog box.
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2 In the Method list, select the spectral analysis method you want to
use. For information about each method, see “Selecting the Method for
Computing Spectral Models” on page 5-37.

3 Specify the frequencies at which to compute the spectral model in one of the
following ways:

• In the Frequencies field, enter either a vector of values, a MATLAB
expression that evaluates to a vector, or a variable name of a vector in
the MATLAB workspace. For example, logspace(-1,2,500).

• Use the combination of Frequency Spacing and Frequencies to
construct the frequency vector of values:

– In the Frequency Spacing list, select Linear or Logarithmic
frequency spacing.

Note For etfe, only the Linear option is available.

– In the Frequencies field, enter the number of frequency points.

For time-domain data, the frequency ranges from 0 to the Nyquist
frequency. For frequency-domain data, the frequency ranges from the
smallest to the largest frequency in the data set.

4 In the Frequency Resolution field, enter the frequency resolution, as
described in “Specifying the Frequency Resolution” on page 5-38. To use
the default value, enter default or, equivalently, the empty matrix [].

5 In the Model Name field, enter the name of the correlation analysis model.
The model name should be unique in the Model Board.

6 Click Estimate to add this model to the Model Board in the System
Identification Tool window.

7 In the Spectral Model dialog box, click Close.

8 To view the frequency-response plot, select the Frequency resp check box
in the System Identification Tool window. For more information about
working with this plot, see “Frequency Response Plots” on page 9-29.
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9 To view the estimated disturbance spectrum, select the Noise spectrum
check box in the System Identification Tool window. For more information
about working with this plot, see “Noise Spectrum Plots” on page 9-36.

To export the model to the MATLAB workspace, drag it to the To Workspace
rectangle in the System Identification Tool GUI. You can retrieve the
responses from the resulting idfrd model object using the bode or nyquist
command.

Using etfe, spa, and spafdr to Estimate Spectral
Models
You can use the etfe, spa, and spafdr functions to estimate spectral models.
The following table provides a brief description of each function and usage
examples.

The resulting models are stored as idfrd model objects. For more information
about models objects, see “Working with Model Objects” on page 1-19.

For detailed information about the functions and their arguments, see the
corresponding reference pages.

Commands for Frequency Response

Command Description Usage

etfe Estimates an empirical
transfer function using
Fourier analysis.

To estimate a model m, use the following syntax:

m=etfe(data)

spa Estimates a frequency
response with a fixed
frequency resolution
using spectral analysis.

To estimate a model m, use the following syntax:

m=spa(data)

spafdr Estimates a frequency
response with a variable
frequency resolution
using spectral analysis.

To estimate a model m, use the following syntax:

m=spafdr(data,R,w)

where R is the resolution vector and w is the frequency
vector.
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Selecting the Method for Computing Spectral Models
This section describes how to select the method for computing spectral models
in the estimation procedures “Estimating Spectral Models in the GUI” on
page 5-34 and “Using etfe, spa, and spafdr to Estimate Spectral Models” on
page 5-36.

System Identification Toolbox provides the following three spectral-analysis
methods:

• etfe (Empirical Transfer Function Estimate)

For input-output data. This method computes the ratio of the Fourier
transform of the output to the Fourier transform of the input.

For time-series data. This method computes a periodogram as the
normalized absolute squares of the Fourier transform of the time series.

ETFE works well for highly resonant systems or narrowband systems.
The drawback of this method is that it requires linearly spaced frequency
values, does not estimate the disturbance spectrum, and does not provide
confidence intervals. ETFE also works well for periodic inputs and
computes exact estimates at multiples of the fundamental frequency of the
input and their ratio.

• spa (SPectral Analysis)

This method is the Blackman-Tukey spectral analysis method, where
windowed versions of the covariance functions are Fourier transformed. For
more information about this algorithm, see “Spectral Analysis Algorithm”
on page 5-31.

• spafdr (SPectral Analysis with Frequency Dependent Resolution)

This method is a variant of the Blackman-Tukey spectral analysis method
with frequency-dependent resolution. First, the algorithm computes
Fourier transforms of the inputs and outputs. Next, the products of the
transformed inputs and outputs with the conjugate input transform are
smoothed over local frequency regions. The widths of the local frequency
regions can vary as a function of frequency. The ratio of these averages
computes the frequency-response estimate.
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Specifying the Frequency Resolution
This section provides information about specifying frequency resolution in the
estimation procedures “Estimating Spectral Models in the GUI” on page 5-34
and “Using etfe, spa, and spafdr to Estimate Spectral Models” on page 5-36.

Frequency resolution is the size of the smallest frequency for which details
in the frequency response and the spectrum can be resolved by the estimate.
A resolution of 0.1 rad/s means that the frequency response variations at
frequency intervals at or below 0.1 rad/s are not resolved.

Note Finer resolution results in greater uncertainty in the model estimate.

Specifying the frequency resolution for etfe and spa is different than for
spafdr, as discussed in the following topics:

• “Frequency Resolution for etfe and spa” on page 5-38

• “Frequency Resolution for spafdr” on page 5-39

• “etfe Frequency Resolution for Periodic Input” on page 5-39

Frequency Resolution for etfe and spa
For etfe and spa, the frequency resolution is approximately equal to the
following value:

2π
M

radians
sampling interval

⎛

⎝
⎜

⎞

⎠
⎟

where M is a scalar integer that sets the size of the lag window.

A large value of M gives good resolution, but results in mode uncertain
estimates.

The default value of M for spa is good for systems that do not have sharp
resonances.

For etfe, the default value of M gives the maximum resolution.
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Frequency Resolution for spafdr
In case of etfe and spa, the frequency response is defined over a uniform
frequency range, 0-Fs/2 radians per second, where Fs is the sampling
frequency—equal to twice the Nyquist frequency. In contrast, spafdr lets
you increase the resolution in a specific frequency range, such as near a
resonance frequency. Conversely, you can make the frequency grid coarser in
the region where the noise dominates—at higher frequencies, for example.
Such customizing of the frequency grid assists in the estimation process by
achieving high fidelity in the frequency range of interest.

For spafdr, the frequency resolution around the frequency k is the value R(k).
You can enter R(k) in any one of the following ways:

• Scalar value of the constant frequency resolution value in radians per
second.

Note The scalar R is inversely related to the M value used for etfe and
spa.

• Vector of frequency values the same size as the frequency vector.

• Expression using MATLAB workspace variables and evaluates to a
resolution vector that is the same size as the frequency vector.

The default value of the resolution for spafdr is twice the difference between
neighboring frequencies in the frequency vector.

etfe Frequency Resolution for Periodic Input
If the input data is marked as periodic and contains an integer number of
periods (data.Period is an integer), etfe computes the frequency response at

frequencies
2 1 2πk
T kk

Period    where Period( ) = , ,..., .

For periodic data, the frequency resolution is ignored.
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Spectrum Normalization and the Sampling Interval
The spectrum of a signal is the square of the Fourier transform of the signal.
The spectral estimate using the function spa, spafdr, and etfe is normalized
by the sampling interval T:

Φ y y
k M

M
iwT

MT R kT e W k( ) ( ) ( )ω =
=−

−∑

where WM(k) is the lag window, and M is the width of the lag window. The
output covariance Ry(kT) is given by the following discrete representation:

ˆ ( ) ( ) ( )R kT
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y lT kT y lTy
l

N
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=
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1

Because there is no scaling in a discrete Fourier transform of a vector,
the purpose of T is to relate the discrete transform of a vector to the
physically-meaningful transform of the measured signal. This normalization

sets the units of Φ y ( )ω as power per radians per unit time, and makes the
frequency units radians per unit time.

The scaling factor of T is necessary to preserve the energy density of the
spectrum after interpolation or decimation.

By Parseval’s theorem, the average energy of the signal must equal the
average energy in the estimated spectrum, as follows:
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To compare the left side of the equation (S1) to the right side (S2), enter the
following commands in MATLAB:

load iddata1
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% Create time-series iddata object
y = z1(:,1,[]);
% Define sample interval from the data
T = y.Ts;
% Estimate frequency response
sp = spa(y);
% Remove spurious dimensions
phiy = squeeze(sp.spec);
% Compute average energy from the estimated
% energy spectrum, where S1 is scaled by T
S1 = sum(phiy)/length(phiy)/T
% Compute average energy of the signal
S2 = sum(y.y.^2)/size(y,1)

In this code, phiy contains Φ y ( )ω between ω = 0 and ω π= T with the
frequency step given as follows:

π
T ⋅

⎛

⎝
⎜

⎞

⎠
⎟length(phiy)

MATLAB responds with the following values for S1 and S2:

S1 =

19.2076
S2 =

19.4646

Thus, the average energy of the signal approximately equals the average
energy in the estimated spectrum.

5-41



5 Estimating Linear Nonparametric and Parametric Models

Black-Box Polynomial Models
A black-box model is a flexible structure that is capable of describing many
different systems. The parameters of a black-box model might not have any
physical interpretation. You can estimate linear, black-box polynomial models
from data with the following characteristics:

• Time- or frequency-domain data (iddata or idfrd data objects).

Note For frequency-domain data, you can only estimate ARX and OE
models.

To estimate black-box polynomial models for time-series data, see
“Time-Series Models” on page 5-94.

• Real data or complex data in any domain.

• Single-output and multiple-output.

This section describes the procedures required to estimate single- and
multiple-output polynomial models in the System Identification Tool GUI and
the MATLAB Command Window. It includes the following topics:

• “Definition of Polynomial Models” on page 5-43

• “Estimating Model Orders and Input Delays ” on page 5-49

• “Specifying Multiple-Input and Multiple-Output ARX Orders” on page 5-57

• “Estimating Polynomial Models in the GUI” on page 5-58

• “Estimating Polynomial Models in the MATLAB Command Window” on
page 5-61

• “Setting the Frequency-Weighing Focus” on page 5-64

• “Specifying the Initial States” on page 5-65
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Definition of Polynomial Models
System Identification Toolbox supports linear polynomial model structures
that have the following general representation:

A q y t
B q
F q

u t nk
C q
D q

e ti

i
i i

i

nu
( ) ( )

( )
( )

( )
( )

( )= −( ) +
=
∑

1

The polynomials A, Bi, C, D, and F i contain the time-shift operator q. ui is
the ith input, nu is the total number of inputs, and nki is the ith input delay
that characterizes the delay response time. The variance of the white noise
e(t) is assumed to be λ .

To estimate polynomial models, you must specify the model order as a set of
integers that represent the number of coefficients for each polynomial you
include in your selected structure—na for A, nb for B, nc for C, nd for D, and
nf for F. You must also specify the number of samples nk corresponding to
the input delay.

The number of coefficients in denominator polynomials is equal to the number
of poles, and the number of coefficients in the numerator polynomials is equal
to the number of zeros plus 1. When the dynamics from u(t) to y(t) contain a
delay of nk samples, then the first nk coefficients of B are zero.

This section discusses the following aspects of black-box polynomial models:

• “Understanding the Time-Shift Operator q” on page 5-44

• “Discrete-Time Representation” on page 5-44

• “Continuous-Time Representation” on page 5-47

• “Multiple-Output ARX Models” on page 5-47

For more information on the family of transfer-function models, see the
corresponding section in System Identification: Theory for the User, Second
Edition, by Lennart Ljung, Prentice Hall, 1999.
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Understanding the Time-Shift Operator q
The general polynomial equation is written in terms of the time-shift operator
q. To understand this time-shift operator, consider the following discrete-time
difference equation:

y t a y t T a y t T
b u t T b u t T

( ) ( ) ( )
( ) ( )

+ − + − =
− + −

1 2

1 2

2
2       

where y(t) is the output, u(t) is the input, and T is the sampling interval. q-1

is a time-shift operator that compactly represents such difference equations

using qu t u t T( ) ( )= − :
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In this case, A q a q a q( ) = + +− −1 1
1

2
2 and B q b q b q( ) = +− −

1
1

2
2 .

Note This q description is completely equivalent to the Z-transform form: q
corresponds to z.

Discrete-Time Representation
The following table summarizes common linear polynomial model structures
supported by System Identification Toolbox. These model structures are
subsets of the following general polynomial equation:

A q y t
B q
F q

u t nk
C q
D q

e ti

i
i i

i

nu
( ) ( )

( )
( )

( )
( )

( )= −( ) +
=
∑

1

The model structures differ by how many of these polynomials are included
in the structure. Thus, different model structures provide varying levels of
flexibility for modeling the dynamics and noise characteristics.
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The System Identification Tool GUI supports only the polynomial models
listed in the table. However, you can use pem to estimate all five polynomial
or any subset of polynomials in the general equation. For more information
about working with pem, see “Using pem to Estimate Polynomial Models”
on page 5-62.

Model
Structure

Discrete-Time Form Noise Model

ARX

A q y t B q u t nk e ti i i
i

nu
( ) ( ) ( ) ( )= −( ) +

=
∑

1

The noise model is 1
A and

the noise is coupled to the
dynamics model. ARX does
not let you model noise and
dynamics independently.
Use ARX to have a
simple model at good
signal-to-noise ratios.ARMAX

A q y t B q u t nk C q e ti i i
i

nu
( ) ( ) ( ) ( ) ( )= −( ) +

=
∑

1

Extends the ARX structure
by providing more
flexibility for modeling
noise using the C
parameters (a Moving
Average of white noise).
Use ARMAX when the
dominating disturbances
enter at the input. Such
disturbances are called
load disturbances.
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Model
Structure

Discrete-Time Form Noise Model

Box-Jenkins
(BJ)

y t
B q
F q

u t nk
C q
D q

e ti

i
i i

i

nu
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( )
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( )
( )

( )= −( ) +
=
∑

1

Provides completely
independent
parameterization for
the dynamics and the
noise using rational
polynomial functions.
Use BJ models when the
noise does not enter at the
input, but is primary a
measurement disturbance,
This structure provides
additional flexibility for
modeling noise.

Output-Error
(OE)

y t
B q
F q
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=
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1

Use when you want to
parameterize dynamics,
but do not want to estimate
a noise model.

Note The white noise
source e(t) to H = 1 in the
general equation.
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Continuous-Time Representation
In continuous time, the general frequency-domain equation is written in terms
of the Laplace transform variable s, which corresponds to a differentiation
operation:

A s Y s
B s
F s

U s
C s
D s

E s( ) ( )
( )
( )

( )
( )
( )

( )= +

In the continuous-time case, the underlying time-domain model is a
differential equation and the model order integers represent the number of
estimated numerator and denominator coefficients. For example, na=3 and
nb=2 correspond to the following model:

A s s a s a s a

B s b s b

( )
( )

= + + +
= +

4
1

3
2

2
3

1 2

The simplest way to estimate continuous-time polynomial models of
arbitrary structure is to first estimate a discrete-time model of arbitrary
order and then use d2c to convert this model to continuous time. For more
information, see “Transforming Between Discrete-Time and Continuous-Time
Representations” on page 10-3.

You can also use System Identification Toolbox to estimate continuous-time
polynomial models directly using continuous-time frequency-domain data. In
this case, you must set the Ts data property to 0 to indicate that you have
continuous-time frequency-domain data.

Multiple-Output ARX Models
You can use a multiple-output ARX model to model a multiple-output dynamic
system. The ARX model structure is given by the following equation:

A q y t B q u t nk e t( ) ( ) ( ) ( )= −( ) +
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For a system with nu inputs and ny outputs, A(q) is an ny-by-ny matrix. A(q)
can be represented as a polynomial in the shift operator q-1:

A q I A q A qny na
na( ) = + + +− −

1
1 K

A(q) can also be represented as a matrix:

A q

a q a q a q
a q a q a q

a q a

ny

ny

ny n

( )

( ) ( ) ( )
( ) ( ) ( )

( )

=

11 12 1

21 22 2

1

K

K

K K K K

yy nyny qq a2( ) ( )K

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

where the matrix element akj is a polynomial in the shift operator q-1:

a q a q a qkj kj kj kj
na nakj kj( ) = + + +− −δ 1 1 K

δkj represents the Kronecker delta, which equals 1 for k=j and equals 0
for k≠j. This polynomial describes how the old values of the jth output are
affected by the kth output. The ith row of A(q) represents the contribution of
the past output values for predict the current value of the ith output.

B(q) is an ny-by-ny matrix. B(q) can be represented as a polynomial in the
shift operator q-1:

B q B B q B qnb
nb( ) = + + +− −

0 1
1 K

5-48



Black-Box Polynomial Models

B(q) can also be represented as a matrix:
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where the matrix element bkj is a polynomial in the shift operator q-1:

b q a q a qkj kj
nb

kj
nk nb nbkj kj kj kj( ) = + +− − − +1 1

K

nkkj is the delay from the jth input to the kth output. B(q) represents the
contributions of inputs to predicting all output values.

Estimating Model Orders and Input Delays
To estimate polynomial models, you must provide input delays and model
orders. If you have insight into the physics of your system, you might be able
to guess the number of poles and zeros. However, in most cases, you do not
know the model orders in advance.

To help you get initial model orders and delays for your system, System
Identification Toolbox lets you estimate a group of ARX models with a range
of orders and delays and compares the performance of these models. You
choose the model orders that correspond to the best model performance and
use these orders as an initial guess for further modeling.

Because this estimation procedure uses the ARX model structure, which
includes the A and B polynomials, you only get estimates for the na, nb, and
nk parameters. However, you can use these results as initial guesses for the
corresponding polynomial orders and input delays in other model structures,
such as ARMAX, OE, and BJ.

If the estimated nk is too small, the leading nb coefficients are much smaller
than their standard deviations. Conversely, if the estimated nk is too large,
there is a significant correlation between the residuals and the input for lags
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that correspond to the missing B terms. For information on residual analysis
plots, see “Residual Analysis Plots” on page 9-15.

This section discusses the following topics:

• “Estimating Orders and Delays in the GUI” on page 5-50

• “Estimating Orders in the MATLAB Command Window” on page 5-53

• “Estimating Delays in the MATLAB Command Window” on page 5-55

• “Using the ARX Model Structure Selection Plot” on page 5-55

Estimating Orders and Delays in the GUI
The following procedure describes how to estimate model orders and input
delays in the System Identification Tool GUI and assumes that you already
have the appropriate data in the Data Board.

1 In the System Identification Tool window, select Estimate > Linear
parametric models to open the Linear Parametric Models dialog box.

The ARX model is already selected by default in the Structure list.

Note For time-series models, select the AR model structure.

2 Edit the Orders field to specify a range of poles, zeros, and delays. For
example, enter the following values for na, nb, and nk:

[1:10 1:10 1:10]

Tip As a shortcut for entering 1:10 for each required model order, click
Order Selection.
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3 Click Estimate to open the ARX Model Structure Selection plot, which
displays the model performance for each combination of model parameters.
The following figure shows an example plot.

4 Select a rectangle that represents the optimum parameter combination and
click Insert to estimates a model with these parameters. For information
about using this plot, see “Using the ARX Model Structure Selection Plot”
on page 5-55.

This action adds a new model to the Model Board in the System
Identification Tool window. The default name of the parametric model
contains the model type and the number of poles, zeros, and delays. For
example, arx692 is an ARX model with na=6, nb=9, and a delay of 2 samples.

5 Click Close to close the ARX Model Structure Selection plot.

After estimating model orders and delays, use these values as initial guesses
for estimating other model structures, as described in “Estimating Polynomial
Models in the GUI” on page 5-58.
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Estimating Orders in the MATLAB Command Window
You can estimate model orders using the struc, arxstruc, and selstruc
functions in combination.

If you are working with a multiple-output system, you must use struc,
arxstruc, and selstruc commands for each output. In this case, you must
subreference the correct output channel in your estimation and validation
data sets.

For each estimation, you use two independent data sets—an estimation data
set and a validation data set. These independent data set can be from different
experiments, or you can select these data sets from a single experiment. For
more information about subreferencing data, see “Subreferencing iddata
Objects” on page 3-39 and “Subreferencing idfrd Objects” on page 3-55.

For an example of estimating model orders for a multiple-input system using
these functions, see “Estimating Model Orders and Delays” in Getting Started
with System Identification Toolbox.

struc. The struc function creates a matrix of possible model-order
combinations for a specified range of na, nb, and nk values.

For example, the following command defines the range of model orders and
delays na=2:5, nb=1:5, and nk=1:5:

NN = struc(2:5,1:5,1:5))

Note struc applies only to single-input and single-output models. If you
have multiple inputs and want to use struc, apply this command to one
input-output pair at a time.

arxstruc. The arxstruc function takes the output from struc, estimates
an ARX model for each model order, and compares the model output to the
measured output. arxstruc returns the loss function for each model, which is
the normalized sum of squared prediction errors.
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For example, the following command uses the range of specified orders NN to
compute the loss function for single-input and single-output estimation data
data_e and validation data data_v:

V = arxstruc(data_e,data_v,NN)

Each row in NN corresponds to one set of orders:

[na nb nk]

selstruc. The selstruc function takes the output from arxstruc and opens
the ARX Model Structure Selection plot to guide your choice of the model
order with the best performance.

For example, to open the ARX Model Structure Selection plot and interactively
choose the optimum parameter combination, use the following command:

selstruc(V)

For more information about working with the ARX Model Structure Selection
plot, see “Using the ARX Model Structure Selection Plot” on page 5-55.

To find the structure that minimizes Akaike’s Information Criterion, use
the following command:

nn = selstruc(V,'AIC')

where nn contains the corresponding na, nb, and nk orders.

Similarly, to find the structure that minimizes the Rissanen’s Minimum
Description Length (MDL), use the following command:

nn = selstruc(V,'MDL')

To select the structure with the smallest loss function, use the following
command:

nn = selstruc(V,0)

After estimating model orders and delays, use these values as initial guesses
for estimating other model structures, as described in “Using pem to Estimate
Polynomial Models” on page 5-62.
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Estimating Delays in the MATLAB Command Window
The delayest function estimates the time delay in a dynamic system by
estimating a low-order, discrete-time ARX model and treating the delay as an
unknown parameter.

By default, delayest assumes that na=nb=2 and that there is a good
signal-to-noise ratio, and uses this information to estimate nk.

To estimate the delay for a data set data, type the following at the MATLAB
prompt:

delayest(data)

If your data has a single input, MATLAB responds with a scalar value for the
input delay—equal to the number of data samples. If your data has multiple
inputs, MATLAB returns a vector, where each value is the delay for the
corresponding input signal.

To compute the actual delay time, you must multiply the input delay by the
sampling interval of the data.

You can also use the ARX Model Structure Selection plot to estimate input
delays and model order together, as described in “Estimating Orders in the
MATLAB Command Window” on page 5-53.

Using the ARX Model Structure Selection Plot
You generate the ARX Model Structure Selection plot for your data to select
the best-fit model.

For a procedure on generating this plot in the System Identification Tool
GUI, see “Estimating Orders and Delays in the GUI” on page 5-50. To open
this plot in the MATLAB Command Window, see “Estimating Orders in the
MATLAB Command Window” on page 5-53.

The following figure shows a sample ARX Model Structure Selection plot.
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The horizontal axis in the ARX Model Structure Selection plot is the total
number of ARX parameters:

Number of parameters = +n na b

The vertical axis, called Unexplained output variance (in %), is the ARX
model prediction error for a specific number of parameters. The prediction
error is the sum of the squares of the differences between the validation
data output and the model output. In other words, Unexplained output
variance (in %) is the portion of the output not explained by the model.

Three rectangles are highlighted on the plot—green, blue, and red. Each color
indicates a type of best-fit criterion, as follows:

• Red minimizes the sum of the squares of the difference between the
validation data output and the model output. This option is considered the
overall best fit.

• Green minimizes Rissanen MDL criterion.
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• Blue minimizes Akaike AIC criterion.

In the ARX Model Structure Selection plot, click any bar to view the orders
that give the best fit. The area on the right is dynamically updated to show
the orders and delays that give the best fit.

For more information about the AIC criterion, see “Using Akaike’s Final
Prediction Error and Information Criterion” on page 9-58.

Specifying Multiple-Input and Multiple-Output ARX
Orders
To estimate a multiple-input and multiple-output (MIMO) ARX model, you
must specify the model order matrices, as follows:

NA — An ny-by-ny matrix whose i-jth entry is the order of the polynomial that
relates the jth output to the ith output.

NB — An ny-by-nu matrix whose i-jth entry is the order of the polynomial that
relates the jth input to the ith output.

NK — An ny-by-nu matrix whose i-jth entry is the delay from the jth input
to the ith output.

For ny outputs and nu inputs, the A coefficients are ny-by-ny matrices and the
B coefficients are ny-by-nu matrices. For more information about MIMO ARX
structure, see “Multiple-Output ARX Models” on page 5-47.

Note For multiple-output time-series models, only AR models are supported.
AR models require only the NA matrix.

In the MATLAB Command Window. Define variables that store the model
order matrices and specify these variables in the estimation-command syntax.
You can use the following syntax to estimate a model with these orders:

arx(data,'na',NA,'nb',NB,'nk',NK)
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In the System Identification Tool GUI. You can enter the enter the
matrices directly in the Orders field.

Tip To simplify entering large matrices orders in the System Identification
Tool GUI, define the variable NN=[NA NB NK] in the MATLAB Command
Window. You can specify this variable in the Orders field.

Estimating Polynomial Models in the GUI
The following procedure describes how to estimate a polynomial model in the
System Identification Tool and assumes that you already have the appropriate
data in the Data Board.

This procedure also requires that you select a model structure and specify
model orders and delays. For more information on how to estimate model
orders and delays, see “Estimating Orders and Delays in the GUI” on page
5-50.

If you are estimating a multiple-output ARX model, you must specify order
matrices in the MATLAB workspace before estimation, as described in
“Specifying Multiple-Input and Multiple-Output ARX Orders” on page 5-57.

1 In the System Identification Tool window, select Estimate > Linear
parametric models to open the Linear Parametric Models dialog box.

2 In the Structure list, select the polynomial model structure you want to
estimate from the following options:

• ARX:[na nb nk]

• ARMAX:[na nb nc nk]

• OE:[nb nf nk]

• BJ:[nb nc nd nf nk]

This action updates the options in the Linear Parametric Models dialog box
to correspond with this model structure. For information about each model
structure, see “Definition of Polynomial Models” on page 5-43.
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Note For time-series data, only AR and ARMA models are available. For
more information about estimating time-series models, see “Time-Series
Models” on page 5-94.

3 In the Orders field, specify the model orders, as follows:

• For single-output polynomial models. Enter the model orders and
delays according to the sequence displayed in the Structure field. For
multiple-input models, specify nb and nk as row vectors with as many
elements as there are inputs. If you are estimating BJ and OE models,
you must also specify nf as a vector.

For example, for a three-input system, nb can be [1 2 4], where each
element corresponds to an input.

• For multiple-output ARX models. Enter the model orders, as
described in “Specifying Multiple-Input and Multiple-Output ARX
Orders” on page 5-57.

Tip To enter model orders and delays using the Order Editor dialog box,
click Order Editor.

4 (For ARX models only) Select the estimation Method as ARX or IV
(instrumental variable method). For more information about these
methods, see “Supported Estimation Algorithms” on page 1-16.

5 In the Name field, edit the name of the model or keep the default. The
name of the model should be unique in the Model Board.

6 In the Focus list, select how to weigh the relative importance of the fit at
different frequencies. For more information about each option, see “Setting
the Frequency-Weighing Focus” on page 5-64.

7 In the Initial state list, specify how you want the algorithm to treat initial
states. For more information about the available options, see “Specifying
the Initial States” on page 5-21.
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Tip If you get an inaccurate fit, try setting a specific method for handling
initial states rather than choosing it automatically.

8 In the Covariance list, select Estimate if you want the algorithm to
compute parameter uncertainties. Effects of such uncertainties are
displayed on plots as model confidence regions.

To omit estimating uncertainty, select None. Skipping uncertainty
computation for large, multiple-output ARX models might reduce
computation time.

9 (For ARMAX, OE, and BJ only) To view the estimation progress in
the MATLAB Command Window, select the Trace check box. During
estimation, the following information is displayed for each iteration:

• Loss function — Equals the determinant of the estimated covariance
matrix of the input noise.

• Parameter values — Values of the model structure coefficients you
specified.

• Search direction — Change in parameter values from the previous
iteration.

• Fit improvements — Shows the actual versus expected improvements in
the fit.

10 Click Estimate to add this model to the Model Board in the System
Identification Tool window.

11 (For prediction-error method only) To stop the search and save the results
after the current iteration has been completed, click Stop Iterations. To
continue iterations from the current model, click the Continue iter button
to assign current parameter values as initial guesses for the next search.

12 To plot the model, select the appropriate check box in the Model Views
area of the System Identification Tool window. For more information about
working with plots and validating models, see Chapter 9, “Plotting and
Validating Models”.
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If you get an inaccurate fit, try estimating a new model with different orders
or structure.

You can export the model to the MATLAB workspace for further analysis by
dragging it to the To Workspace rectangle in the System Identification Tool
window. For more information about working with models, see Chapter 10,
“Postprocessing and Using Estimated Models”.

Estimating Polynomial Models in the MATLAB
Command Window
This section discusses the following topics:

• “Using arx and iv4 to Estimate ARX Models” on page 5-61

• “Using pem to Estimate Polynomial Models” on page 5-62

Using arx and iv4 to Estimate ARX Models
You can estimate single-output and multiple-output ARX models using the
arx and iv4 commands.

If you are estimating a multiple-output ARX model, you must specify order
matrices in the MATLAB workspace before estimation, as described in
“Specifying Multiple-Input and Multiple-Output ARX Orders” on page 5-57.

For single-output data, the arx and iv4 commands produce an idpoly model
object, and for multiple-output data these commands produce an idarx model
object.

You can use the following general syntax to both configure and estimate ARX
models:

% Using ARX method
m = arx(data,[na nb nk],'Property1',Value1,...,

'PropertyN',ValueN)
% Using IV method
m = iv4(data,[na nb nk],'Property1',Value1,...,

'PropertyN',ValueN)
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data is the estimation data and [na nb nk] specifies the model orders, as
discussed in “Definition of Polynomial Models” on page 5-43.

The property-value pairs specify any model properties that configure the
estimation algorithm and the initial conditions. For more information on
accessing and setting model properties, see “Model Properties” on page 1-30.

Note You can specify all property-value pairs as a simple, comma-separated
list.

To get discrete-time models, use the time-domain data (iddata object). To get
a single-output continuous-time model, apply d2c to a discrete-time model
or use continuous-time frequency-domain data—either idfrd object, or
frequency-domain iddata with Ts=0.

Note The Toolbox does not support multiple-output continuous-time idarx
models.

For detailed information about these commands, see the corresponding
reference pages.

Using pem to Estimate Polynomial Models
You can estimate any single-output polynomial model using the iterative
prediction-error estimation method pem. For Gaussian disturbances, this
method gives the maximum likelihood estimate. that minimizes the prediction
errors to obtain maximum-likelihood values. The resulting models are stored
as idpoly model objects.

You can also use pem to refine parameter estimates of an existing polynomial
model, as described in “Refining Models” on page 1-46.

Use the following general syntax to both configure and estimate polynomial
models:

m = pem(data,'na',na,
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'nb',nb,
'nc',nc,
'nd',nb,
'nf',nc,
'nk',nk,
'Property1',Value1,...,
'PropertyN',ValueN)

where data is the estimation data. na, nb, nc, nd, nf are integers that specify
the model orders, and nk specifies the input delays for each input. If you
skip any property-value pair, the corresponding parameter value is set to
zero—except nk, which has the default value 1. For more information about
model orders, see “Definition of Polynomial Models” on page 5-43.

Note You do not need to construct the model object using idoly before
estimation.

If you want to estimate the coefficients of all five polynomials, A, B, C, D, and
F, you must specify an integer order for each polynomial. However, if you
want to specify an ARMAX model for example, which includes only the A, B,
and C polynomials, you must set nd and nf to 0.

Note To get faster estimation of ARX models, use arx or iv4 instead of pem.

In addition to the polynomial models listed in “Definition of Polynomial
Models” on page 5-43, you can use pem to model the ARARX structure—called
the generalized least squares model—by setting nc=nf=0. You can also model
the ARARMAX structure—called the extended matrix model—by setting nf=0.

The property-value pairs specify any model properties that configure
the estimation algorithm and the initial conditions. You can enter all
property-value pairs in pem as a comma-separated list without worrying
about the hierarchy of these properties in the idpoly model object. For more
information on accessing and setting model properties, see “Model Properties”
on page 1-30.
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For multiple inputs, nb, nf, and nk are row vectors of the same lengths as the
number of input channels:

nb = [nb1 ... nbnu];
nf = [nf1 ... nfnu];
nk = [nk1 ... nknu];

For ARMAX, Box-Jenkins, and Output-Error Models—which can only be
estimated using the iterative prediction-error method—use the armax, bj, and
oe estimation commands, respectively. These commands are versions of pem
with simplified syntax for these specific model structures, as follows:

m = armax(Data,[na nb nc nk])
m = oe(Data,[nb nf nk])
m = bj(Data,[nb nc nd nf nk])

Tip If your data is sampled fast, it might help to apply a lowpass filter to the
data before estimating the model. For example, to only model data in the
frequency range 0-10 rad/s, use the Focus property, as follows:

m = oe(Data,[nb nf nk],'Focus',[0 10])

For detailed information about pem and idpoly, see the corresponding
reference pages.

Setting the Frequency-Weighing Focus
You can specify how the estimation algorithm weighs the fit at various
frequencies. This information supports the estimation procedures “Estimating
Polynomial Models in the GUI” on page 5-58 and “Using pem to Estimate
Polynomial Models” on page 5-62.

In the System Identification Tool GUI. Set the Focus to one of the
following options:

• Prediction — Uses the inverse of the noise model H to weigh the relative
importance of how closely to fit the data in various frequency ranges.
Corresponds to minimizing one-step-ahead prediction, which typically
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favors the fit over a short time interval. Optimized for output prediction
applications.

• Simulation — Uses the input spectrum to weigh the relative importance of
the fit in a specific frequency range. Does not use the noise model to weigh
the relative importance of how closely to fit the data in various frequency
ranges. Optimized for output simulation applications.

• Stability — Estimates the best stable model. For more information on
model stability, see “Unstable Models” on page 9-66.

• Filter — Specify a custom filter to open the Estimation Focus dialog box,
where you can enter a filter, as described in “Simple Passband Filter” on
page 4-36 or “Defining a Custom Filter” on page 4-36. This prefiltering
applies only for estimating the dynamics from input to output. The
disturbance model is determined from the unfiltered estimation data.

In the MATLAB Command Window. Specify the focus as an argument in
the estimation function using the same options as in the GUI. For example,
use this command to estimate an ARX model and emphasize the frequency
content related to the input spectrum only:

m=arx(data,[2 2 3],'Focus','Simulation')

This Focus setting might produce more accurate simulation results.

Specifying the Initial States
When you use the iterative estimation algorithm PEM to estimate ARMAX,
Box-Jenkins (BJ), Output-Error (OE), you must specify how the algorithm
treats initial states.

This information supports the estimation procedures “Estimating Polynomial
Models in the GUI” on page 5-58 and “Using pem to Estimate Polynomial
Models” on page 5-62. For more information about estimation algorithms, see
“Supported Estimation Algorithms” on page 1-16.

In the System Identification Tool GUI. For ARMAX, OE, and BJ models,
set the Initial state to one of the following options:
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• Auto — Automatically chooses one of the following options based on the
estimation data. If initial states have negligible effect on the prediction
errors, the initial states are set to zero to optimize algorithm performance.

• Zero — Sets all initial states to zero.

• Estimate — Treats the initial states as an unknown vector of parameters
and estimates these states from the data.

• Backcast — Estimates initial states using a smoothing filter.

In the MATLAB Command Window. Specify the initial states as an
argument in the estimation function. For example, use this command to
estimate an ARMAX model and set the initial states to zero:

m=armax(data,[2 2 2 3],'InitialState','zero')

For a complete list of values for the InitialState model property, see the
idpoly reference pages.
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State-Space Models
State-space models are models that use state variables to describe a system
by a set of first-order differential equations, rather than by one or more
nth-order differential equations. State variables x(t) can be reconstructed
from the measured input-output data, but are not themselves measured
during an experiment.

The state-space model structure is an excellent choice for quick estimation
because it requires only two parameters:

• n — The number of poles (size of the A matrix).

• nk — One or more input delays.

You can estimate linear state-space models from data with the following
characteristics:

• Time- or frequency-domain data (iddata or idfrd data objects). To
estimate state-space models for time-series data, see “Time-Series Models”
on page 5-94.

• Real data or complex data in any domain.

• Single-output and multiple-output.

This section describes the procedures required to estimate single- and
multiple-output state-space models in the System Identification Tool GUI and
the MATLAB Command Window. It includes the following topics:

• “Definition of State-Space Models” on page 5-68

• “Supported State-Space Parameterizations” on page 5-71

• “Estimating State-Space Model Orders” on page 5-71

• “Estimating State-Space Models in the GUI” on page 5-77

• “Using n4sid and pem to Estimate State-Space Models” on page 5-79

• “Using n4sid and pem to Estimate Free-Parameterization State-Space
Models” on page 5-83
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• “Estimating State-Space Models with Canonical Parameterization” on page
5-84

• “Estimating State-Space Models with Structured Parameterization” on
page 5-85

• “Setting the Frequency-Weighing Focus” on page 5-91

• “Specifying the Initial States” on page 5-92

Definition of State-Space Models
The model order for state-space models is an integer equal to the dimension
of x(t) and relates to the number of delayed inputs and outputs used in the
corresponding linear difference equation.

Continuous-Time Representation
In continuous-time, the state-space description has the following form:

& %x t Fx t Gu t Kw t
y t Hx t Du t w t
x x

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

= + +
= + +
=0 0

It is often easier to define a parameterized state-space model in continuous
time because physical laws are most often described in terms of differential
equations. In this case, the matrices F, G, H, and D contain elements with
physical significance—for example, material constants. x0 specifies the initial
states.

Note K=0 gives the state-space representation of an Output-Error model.
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Discrete-Time Representation
Discrete-time state-space models provide the same type of linear difference
relationship between the inputs and the outputs as the linear ARX model,
but are rearranged such that there is only one delay in the expressions. The
discrete-time state-space model structure is often written in the innovations
form that describes noise:

x kT T Ax kT Bu kT Ke kT
y kT Cx kT Du kT e kT
x

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

+ = + +
= + +

=0 xx0

where T is the sampling interval, u(kT) is the input at time instant kT, and
y(kT) is the output at time instant kT.

Note K=0 gives the state-space representation of an Output-Error model.

Relationship Between Continuous-Time and Discrete-Time
State Matrices
The relationships between the discrete state-space matrices A, B, C, D, and K

and the continuous-time state-space matrices F, G, H, D, and %K are as follows:

A e

B e Gd

C H

FT

F
T

=

=

=

∫ τ τ
0

These relationships assume that the input is piecewise-constant over time

intervals kT t k T≤ < +( )1 .
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The exact relationship between K and %K is complicated. However, for short
sampling intervals T, the following approximation works well:

K e KdF
T

= ∫ τ τ%

0

State-Space Representation of Transfer Functions
For linear models, the general symbolic model description is given by:

y Gu He= +

G takes the input u to the output y and captures the system dynamics. H is
an operator that describes the properties of the additive output noise model.
Both G and H are called transfer functions.

The discrete-time state-space representation is given by the following
equation:

x kT T Ax kT Bu kT Ke kT
y kT Cx kT Du kT e kT
x

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

+ = + +
= + +

=0 xx0

where T is the sampling interval, u(kT) is the input at time instant kT, and
y(kT) is the output at time instant kT.

The relationships between the transfer functions and the discrete-time
state-space matrices are given by the following equations:

G q C qI A B D

H q C qI A K I

nx

nx ny

( ) ( )

( ) ( )

= − +

= − +

−

−

1

1

where Inx is the nx-by-nx identity matrix, Iny is the nx-by-nx identity matrix,
and ny is the dimension of y and e.
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Supported State-Space Parameterizations
System Identification Toolbox supports the following parameterizations that
indicate which parameters are estimated and which are set to specific values:

• Free parametrization results in the estimation of all system matrix
elements A, B, C, D, and K.

• Canonical forms of A, B, C, D, and K matrices.

Canonical parameterization represents a state-space system in its minimal
form, using the minimum number of free parameters to capture the
dynamics. Thus, free parameters appear in only a few of the rows and
columns in system matrices A, B, C, and D, and the remaining matrix
elements are fixed to zeros and ones.

• Structured parameterization lets you specify the values of specific
parameters and exclude these parameters from estimation.

• Completely arbitrary mapping of parameters to state-space matrices. For
more information, see “Linear Grey-Box Models” on page 7-5.

You can only estimate free state-space models in discrete-time.
Continuous state-space models are available for canonical and structured
parameterizations and grey-box models.

Note To estimate canonical and structured state-space models in the System
Identification Tool GUI, define the corresponding model structures in the
MATLAB Command Window and import them into the System Identification
Tool.

Estimating State-Space Model Orders
To estimate a state-space model, you must specify a model order and one or
more input delays. The model order is always a single integer—regardless
of the number of inputs and outputs. However, the number of input delays
must correspond to the number of input channels.

To help you get an initial model order for your system, System Identification
Toolbox lets you estimate a group of state-space models with a range of orders
for a specific delay and compares the performance of these models. You choose
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the model order that include states with the highest contribution to the
input-output behavior of the model and use this order as an initial guess
for further modeling.

This section discusses the following topics:

• “Estimating Orders in the GUI” on page 5-72

• “Estimating Orders in the MATLAB Command Window” on page 5-75

• “Using the Model Order Selection Plot” on page 5-75

Estimating Orders in the GUI
The following procedure describes how to estimate model orders for a specific
input delay in the System Identification Tool GUI and assumes that you
already have the appropriate data in the Data Board.

1 In the System Identification Tool window, select Estimate > Linear
parametric models to open the Linear Parametric Models dialog box.

2 In the Structure list, select State Space: n [nk].

3 Edit the Orders field to specify a range of orders for a specific delay. For
example, enter the following values for n and nk:

1:10 [1]

Tip As a shortcut for entering 1:10 [1], click Order Selection.
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4 Verify that the Method is set to N4SID.

5 Click Estimate to open the Model Order Selection plot, which displays the
relative measure of how much each state contributes to the input-output
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behavior of the model (log of singular values of the covariance matrix). The
following figure shows an example plot.

6 Select the rectangle that represents the cutoff for the states on the left that
provide a significant contribution to the input-output behavior, and click
Insert to estimate a model with this order. The recommended choice is red.
For information about using the Model Order Selection plot, see “Using the
Model Order Selection Plot” on page 5-75.

This action adds a new model to the Model Board in the System
Identification Tool window. The default name of the parametric model
combines the string n4s and the selected model order.

In the previous figure, states 1 and 2 provide the most significant
contribution. The contributions to the right of state 2 drop significantly.

7 Click Close to close the Model Order Selection plot.
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After estimating model orders, use this values as an initial guess for
estimating other state-space models, as described in “Estimating State-Space
Models in the GUI” on page 5-77.

Estimating Orders in the MATLAB Command Window
You can estimate state-space model order using the n4sid command.

Use following syntax to specify the range of model orders to try for a specific
input delay.

m = n4sid(data,n1:n2,'nk',nk);

where data is the estimation data set, n1 and n2 specify the range of orders,
and nk specifies the input delay. For multiple-input systems, nk is a vector
of input delays.

This command opens the Model Order Selection plot. For information about
using this plot, see “Using the Model Order Selection Plot” on page 5-75.

Alternatively, you can use the pem command to open the Model Order
Selection plot, as follows:

m = pem(Data,'nx',nn)

where nn = [n1,n2,...,nN] specifies the vector or range of orders you
want to try.

To omit opening the Model Order Selection plot and automatically select the
best order, use the following syntax:

m = pem(Data,'best')

For a tutorial on estimating model orders for a multiple-input system, see
“State-Space Model” in Getting Started with System Identification Toolbox.

Using the Model Order Selection Plot
You can generate the Model Order Selection plot for your data to select
the number of states that provide the highest relative contribution to the
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input-output behavior of the model (log of singular values of the covariance
matrix).

For a procedure on generating this plot in the System Identification Tool
GUI, see “Estimating Orders in the GUI” on page 5-72. To open this plot in
the MATLAB Command Window, see “Estimating Orders in the MATLAB
Command Window” on page 5-75.

The following figure shows a sample Model Order Selection plot.

The horizontal axis corresponds to the model order n. The vertical axis, called
Log of Singular Values, shows the singular values of a covariance matrix
constructed from the observed data.

You use this plot to decide which states provide a significant relative
contribution to the input-output behavior, and which states provide the
smallest contribution. Based on this plot, select the rectangle that represents
the cutoff for the states on the left that provide a significant contribution to
the input-output behavior. The recommended choice is red.
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For example, in the previous figure, states 1 and 2 provide the most significant
contribution. However, the contributions of the states to the right of state 2
drop significantly. This sharp decrease in the log of the singular values after
n=2 indicates that using two states is sufficient to get an accurate model.

Estimating State-Space Models in the GUI
The following procedure describes how to estimate a state-space model with
free parameterization in the System Identification Tool GUI. It assumes that
you already have the appropriate data in the Data Board.

Note Only free parameterization is directly supported in the System
Identification Tool. You can estimate canonical and structured
parameterizations in the MATLAB Command Window import them into the
System Identification Tool for estimation.

This procedure also requires that you specify model order and any delays. For
more information on how to estimate model orders, see “Estimating Orders in
the GUI” on page 5-72.

1 In the System Identification Tool window, select Estimate > Linear
parametric models to open the Linear Parametric Models dialog box.

2 In the Structure list, select State Space: n [nk].

This action updates the options in the Linear Parametric Models dialog box
to correspond with this model structure. For information about each model
structure, see “Definition of State-Space Models” on page 5-68.

3 In the Orders field, specify the model order and delay, as follows:

• For single-input models. Enter the model order integer and the input
delay in terms of the number of samples. Omitting nk uses the default
value nk=1.

For example, enter 4 [2] for a fourth-order model and nk=2.

• For multiple-input models. Enter the model order integer and the
input delay vector—which is a 1-by-nu vector whose ith entry is the
delay for the ith input.
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For example, for a two-input system, enter 4 [1 1] for a fourth-order
model and a delay of 1 for each input.

• For multiple-output models. Enter the model order integer in the
same way as for single-input models.

Tip To enter model order and any delays using the Order Editor dialog box,
click Order Editor.

4 Select the estimation Method as N4SID or PEM. For more information
about these methods, see “Supported Estimation Algorithms” on page 1-16.

5 In the Name field, edit the name of the model or keep the default. The
name of the model should be unique in the Model Board.

6 In the Focus list, select how to weigh the relative importance of the fit at
different frequencies. For more information about each option, see “Setting
the Frequency-Weighing Focus” on page 5-91.

7 (If using PEM) In the Initial state list, specify how you want the algorithm
to treat initial states. For more information about the available options,
see “Specifying the Initial States” on page 5-92.

Tip If you get an inaccurate fit, try setting a specific method for handling
initial states rather than choosing it automatically.

8 In the Covariance list, select Estimate if you want the algorithm to
compute parameter uncertainties. Effects of such uncertainties are
displayed on plots as model confidence regions.

To omit estimating uncertainty, select None. Skipping uncertainty
computation reduces computation time for complex models and large data
sets.

9 (If using PEM) To view the estimation progress in the MATLAB Command
Window, select the Trace check box. During estimation, the following
information is displayed for each iteration:

5-78



State-Space Models

• Loss function — Equals the determinant of the estimated covariance
matrix of the input noise.

• Parameter values — Values of the model structure coefficients you
specified.

• Search direction — Change in parameter values from the previous
iteration.

• Fit improvements — Shows the actual versus expected improvements in
the fit.

10 Click Estimate to add this model to the Model Board in the System
Identification Tool window.

11 (If using PEM) To stop the search and save the results after the current
iteration has been completed, click Stop Iterations. To continue iterations
from the current model, click the Continue iter button to assign current
parameter values as initial guesses for the next search.

12 To plot the model, select the appropriate check box in the Model Views
area of the System Identification Tool window. For more information about
working with plots and validating models, see Chapter 9, “Plotting and
Validating Models”.

You can export the model to the MATLAB workspace for further analysis by
dragging it to the To Workspace rectangle in the System Identification Tool
window. For more information about working with models, see Chapter 10,
“Postprocessing and Using Estimated Models”.

Using n4sid and pem to Estimate State-Space Models
You can estimate continuous-time and discrete-time polynomial model using
the iterative estimation method pem that minimizes the prediction errors
to obtain maximum-likelihood values. You can also use the noniterative
subspace method n4sid. For more information about these methods, see
“Supported Estimation Algorithms” on page 1-16.

You can only estimate discrete-time state-space models with free
parameterization. Continuous state-space models are available for canonical
and structured parameterizations.
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The resulting models are stored as idss model objects.

You can also use pem to refine parameter estimates of an existing polynomial
model, as described in “Refining Models” on page 1-46.

This section discusses the following topics:

• “General Syntax for n4sid and pem” on page 5-80

• “Common Parameters to Specify Model Estimation” on page 5-81

• “Estimating D, K, and X0 Matrices” on page 5-81

General Syntax for n4sid and pem
Use the following general syntax to both configure and estimate state-space
models:

m = pem(data,n,
'nk',nk,
'Property1',Value1,...,
'PropertyN',ValueN)

where data is the estimation data and nk specifies the input delays for each
input.

As an alternative to pem, you can use n4sid:

m = n4sid(data,n,
'nk',nk,
'Property1',Value1,...,
'PropertyN',ValueN)

Note pem uses n4sid to initialize the state-space matrices.

For more information about these commands, see the corresponding references
pages. For more information about estimating model order, see “Estimating
Orders in the MATLAB Command Window” on page 5-75.
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Common Parameters to Specify Model Estimation
The following properties are common to specify in the estimation syntax:

• SSparameterization — Specifies the state-space parameterization
form. For more information about estimating a specific state-space
parameterization, see the following topics:

- “Using n4sid and pem to Estimate Free-Parameterization State-Space
Models” on page 5-83

- “Estimating State-Space Models with Canonical Parameterization” on
page 5-84

- “Estimating State-Space Models with Structured Parameterization”
on page 5-85

• Focus — Specifies the frequency-weighing of the noise model during
estimation. See “Setting the Frequency-Weighing Focus” on page 5-91.

• DisturbanceModel — Specifies to estimate or omit the noise model for
time-domain data. See “K Matrix” on page 5-82.

• InitialStates — Specifies to either set or estimate the initial states. See
“Specifying the Initial States” on page 5-92

For more information about these properties, see the idss references pages.

Estimating D, K, and X0 Matrices
For state-space models with any parameterization, you can specify whether
to estimate the K and X0 matrices, which represent the noise model and the
initial states, respectively.

For state-space models with structured parameterization, you can also specify
to estimate the D matrix. However, for free and canonical forms, the structure
of the D matrix is set based on your choice of nk.

For more information about state-space structure, see “Definition of
State-Space Models” on page 5-68.

D Matrix. By default, the D matrix is not estimated. Set the model property
nk to estimate the D matrix, as follows:
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• To estimate the kth column of D (corresponding to the kth input), set nk to
0. For nu inputs, nk is a 1-by-nu vector.

• To estimate the full D matrix, set all nk values to 0. For example, for two
inputs:

m = pem(Data,n,'nk',[0 0])

To omit estimating the D matrix, set the nk value or values to 1, which is
the default.

K Matrix. K represents the noise model.

For frequency-domain data, no noise model is estimated and K is set to 0. For
time-domain data, K is estimated by default.

To modify whether K is estimated for time-domain data, you can specify the
DisturbanceModel property in the estimator syntax.

Initially, you can omit estimating the noise parameters in K to focus on
achieving a reasonable model for the system dynamics. After estimating the
dynamic model, you can use pem to refine the model and set the K parameters
to be estimated. For example:

m = pem(Data,md,'DisturbanceModel','Estimate')

where md is the dynamic model without noise.

To set K to zero, set the value of the DisturbanceModel property to 'None'.
For example:

m = pem(Data,n,'DisturbanceModel','None')

XO Matrices. X0 stores the estimated or specified initial states of the model.

To specify how to handle the initial states, set the value of the InitialStates
model property. For example, to set the initial states to zero, set the
InitialStates property to 'zero', as follows:

m = pem(Data,n,'InitialStates','zero')
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When you estimate models using multiexperiment data and InitialStates
is set to 'Estimate', the X0 stores the estimated initial states corresponding
to the last experiment in the data set.

For a complete list of values for the InitialStates property, see “Specifying
the Initial States” on page 5-92.

Using n4sid and pem to Estimate
Free-Parameterization State-Space Models
The default parameterization of the state-space matrices A, B, C, D, and K is
free; that is, any elements in the matrices are adjustable by the estimation
routines. Because the parameterization of A, B, and C is free, a basis for
the state-space realization is automatically selected to give well-conditioned
calculations.

You can only estimate discrete-time state-space models with any
parameterization. Continuous state-space models are available for canonical
and structured parameterizations only.

To estimate the disturbance model K, you must use time domain data.

Suppose that you have no knowledge about the internal structure of the
discrete-time state-space model. To quickly get started, use the following
syntax:

m = pem(data)

where data is your estimation data. This command estimates a state-space
model for an automatically-selected order between 1 and 10.

To find a black-box model of a specific order n, use the following syntax:

m = pem(Data,n)

The iterative algorithm pem is initialized by the subspace method n4sid. You
can use n4sid directly, as an alternative to pem:

m = n4sid(Data,n)
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Estimating State-Space Models with Canonical
Parameterization
You can estimate state-space models with canonical parameterization in the
MATLAB Command Window.

Canonical parameterization represents a state-space system in its minimal
form, using the minimum number of free parameters to capture the dynamics.
Thus, free parameters appear in only a few of the rows and columns in system
matrices A, B, C, and D, and the remaining matrix elements are fixed to
zeros and ones.

Of the two popular canonical forms, which include controllable canonical form
and observable canonical form, System Identification Toolbox supports only
controllable forms. Controllable canonical structures include free parameters
in output rows of the A matrix, free B and K matrices, and fixed C matrix.
The representation within controllable canonical forms is not unique and
the exact form depends on the actual choices of canonical indices. For more
information about the distribution of free parameters in canonical forms, see
the appendix on identifiability of black-box multivariable model structures in
System Identification: Theory for the User, Second Edition, by Lennart Ljung,
Prentice Hall, 1999 (equation 4A.16).

To specify a canonical form for A, B, C, and D, set the SSparameterization
model property directly in the estimator syntax, as follows:

m = pem(data,n,'SSparameterization','canonical')

If you have time-domain data, the preceding command estimates a
discrete-time model.

Note You estimate the D matrix in canonical form, you must set the nk
property. See “Estimating D, K, and X0 Matrices” on page 5-81.

If you have continuous-time frequency-domain data, the preceding syntax
estimates an nth order continuous-time state-space model with no direct
contribution from the input to the output (D=0). To include a D matrix, set
the nk property to 0 in the estimation, as follows:
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m = pem(data,n,'SSparameterization','canonical',
'nk',0)

You can specify additional property-value pairs similar to the
free-parameterization case, as described in “Using n4sid and pem to Estimate
Free-Parameterization State-Space Models” on page 5-83.

Estimating State-Space Models with Structured
Parameterization
You can estimate state-space models with structured parameterization in
the MATLAB Command Window. This might be simpler than estimating a
grey-box model, as described in Chapter 7, “Estimating Grey-Box Models”.

Structured parameterization lets you exclude specific parameters from
estimation by setting these parameters to specific values. This approach is
useful when you can derive state-space matrices from physical principles and
provide initial parameter values based on physical insight. You can use this
approach to discover what happens if you fix specific parameter values or if
you free certain parameters.

In the case of structured parameterization, there are two stages to the
estimation procedure:

1 Using the idss command to specify the structure of the state-space
matrices and the initial values of the free parameters.

2 Using the pem estimation command to estimate the free model parameters.

This approach is different from estimating models with free and canonical
parameterizations, where it is not necessary to specify initial parameter
values before the estimation. For free parameterization, there is no
structure to specify because it is assumed to be unknown. For canonical
parameterization, the structure is fixed to a specific form.

The following section introduce you the specifying the model structure and
provide examples:

• “Specifying the State-Space Structure” on page 5-86
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• “Example – Estimating Structured Discrete-Time State-Space Models”
on page 5-88

• “Example – Estimating Structured Continuous-Time State-Space Models”
on page 5-89

Specifying the State-Space Structure
To specify the state-space model structure, first define the A, B, C, D, K and X0
matrices in the MATLAB workspace.

To define a discrete-time state-space structure, use the following syntax:

m = idss(A,B,C,D,K,X0,
'Ts',T,
'SSparameterization','structured')

where A, B, C, D, and K specify both the fixed parameter values and the
initial values for the free parameters. T is the sampling interval. Setting
SSparameterization to 'structured' flags that you want to estimate a
partial structure for this state-space model.

Similarly, to define a continuous-time state-space structure, use the following
syntax:

m = idss(A,B,C,D,K,X0,
'Ts',0,
'SSparameterization','structured')

In the continuous-time case, you must set the sampling interval property Ts
to zero.

After you create the nominal model structure, you must specify which
parameters to estimate and which to set to specific values. To accomplish this,
you must edit the structures of the following model properties: As, Bs, Cs, Ds,
Ks, and x0s. These structure matrices are properties of the nominal model
you constructed and have the same sizes as A, B, C, D, K, and x0, respectively.
Initially, the structure matrices contain NaN values.

Specify the structure matrix values, as follows:
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• Set a NaN value to flag free parameters at the corresponding locations in
A, B, C, D, K, and x0.

• Specify the values of fixed parameters at the corresponding locations in
A, B, C, D, K, and x0.

For example, suppose that you constructed a nominal state-space model m
with the following A matrix:

A = [2 0; 0 3]

Suppose you want to fix A(1,2)=A(2,1)=0. To specify the parameters you
want to fix, enter their values at the corresponding locations in the structure
matrix As:

m.As = [NaN 0; 0 NaN]

The estimation algorithm only estimates the parameters in A that have a
NaN value in As.

Finally, use pem to estimate the model, as described in “Using n4sid and pem
to Estimate State-Space Models” on page 5-79.

Use physical insight, whenever possible, to initialize the parameters for
the iterative search algorithm. Because it is possible that the numerical
minimization gets stuck in a local minimum, try several different initialization
values for the parameters. For random initialization, use the init command.
When the model structure contains parameters with different orders of
magnitude, try to scale the variables so that the parameters are all roughly
the same magnitude.

The iterative search computes gradients of the prediction errors with respect
to the parameters using numerical differentiation. The step size is specified
by the nuderst m-file. The default step size is equal to 10–4 times the absolute
value of a parameter or equal to 10–7, whichever is larger. To specify a
different step size, edit the nuderst m-file.
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Example – Estimating Structured Discrete-Time State-Space
Models
In this example, you estimate the unknown parameters θ θ θ θ θ1 2 3 4 5, , , , in the
following discrete-time model:
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Suppose that the nominal values of the unknown parameters θ θ θ θ θ1 2 3 4 5, , , ,
are -1, 2, 3, 4, and 5, respectively.

The discrete-time state-space model structure is defined by the following
equation:

x kT T Ax kT Bu kT Ke kT
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To construct and estimate the parameters of this discrete-time state-space
model, perform the following procedure:

1 Construct the parameter matrices and initialize the parameter values
using the nominal parameter values:

A = [1,-1;0,1];
B = [2;3];
C = [1,0];
D = 0;
K = [4;5];

2 Construct the state-space model object:

m = idss(A,B,C,D,K);
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3 Specify the parameter values in the structure matrices that you do not
want to estimate:

m.As = [1, NaN; 0 ,1];
m.Bs = [NaN;NaN];
m.Cs = [1, 0];
m.Ds = 0;
m.Ks = [NaN;NaN];
m.x0s = [0;0];

4 Estimate the model structure:

m = pem(data,m)

where data is name of the iddata object containing time-domain or
frequency-domain data. The iterative search starts with the nominal
values in the A, B, C, D, K, and x0 matrices.

Example – Estimating Structured Continuous-Time State-Space
Models
In this example, you estimate the unknown parameters θ θ θ1 2 3, , in the
following continuous-time model:
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This equation represents an electrical motor, where y t x t1 1( ) ( )= is the

angular position of the motor shaft, and y t x t2 2( ) ( )= is the angular velocity.

The parameter −θ1 is the inverse time constant of the motor, and −θ θ
2

1
is the

static gain from the input to the angular velocity.
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The motor is at rest at t=0, but its angular position θ3 is unknown. Suppose

that the approximate nominal values of the unknown parameters are θ1 1= −

and θ2 0 25= . . The variance of the errors in the position measurement is
0.01, and the variance in the angular velocity measurements is 0.1. For
more information about this example, see the section on state-space models
in System Identification: Theory for the User, Second Edition, by Lennart
Ljung, Prentice Hall, 1999.

The continuous-time state-space model structure is defined by the following
equation:

& %x t Fx t Gu t Kw t
y t Hx t Du t w t
x x

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

= + +
= + +
=0 0

To construct and estimate the parameters of this continuous-time state-space
model, perform the following procedure:

1 Construct the parameter matrices and initialize the parameter values
using the nominal parameter values:

Note The following matrices correspond to continuous-time
representation. However, to be consistent with the idss object property
name, this example uses A, B, and C instead of F, G, H.

A = [0 1;0 -1];
B = [0;0.25];
C = eye(2);
D = [0;0];
K = zeros(2,2);
x0 = [0;0];

2 Construct the continuous-time state-space model object:

m = idss(A,B,C,D,K,x0,'Ts',0);
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3 Specify the parameter values in the structure matrices that you do not
want to estimate:

m.As = [0 1;0 NaN];
m.Bs = [0;NaN];
m.Cs = m.c;
m.Ds = m.d;
m.Ks = m.k;
m.x0s = [NaN;0]
m.NoiseVariance = [0.01 0; 0 0.1];

4 Estimate the model structure:

m = pem(data,m)

where data is name of the iddata object containing time-domain or
frequency-domain data. The iterative search for a minimum is initialized
by the parameters in the nominal model m. The continuous-time model is
sampled using the same sampling interval as the data.

5 To simulate this system using the sampling interval T = 0.1 for input u
and the noise realization e, use the following commands:

e = randn(300,2);
u = idinput(300);
simdat = iddata([],[u e],'Ts',0.1);
y = sim(m,simdat)

The continuous system is automatically sampled using Ts=0.1. The noise
sequence is scaled according to the matrix m.noisevar.

If you discover the that the motor was not initially at rest, you can estimate
x2(0) by setting the second element of the x0s structure matrix to NaN, as
follows:

m_new = pem(data,m,'x0s',[NaN;NaN])

Setting the Frequency-Weighing Focus
You can specify how the estimation algorithm weighs the fit at various
frequencies. This information supports the estimation procedures “Estimating
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State-Space Models in the GUI” on page 5-77 and “Using n4sid and pem to
Estimate State-Space Models” on page 5-79.

In the System Identification Tool GUI. Set the Focus to one of the
following options:

• Prediction — Uses the inverse of the noise model H to weigh the relative
importance of how closely to fit the data in various frequency ranges.
Corresponds to minimizing one-step-ahead prediction, which typically
favors the fit over a short time interval. Optimized for output prediction
applications.

• Simulation — Uses the input spectrum to weigh the relative importance of
the fit in a specific frequency range. Does not use the noise model to weigh
the relative importance of how closely to fit the data in various frequency
ranges. Optimized for output simulation applications.

• Stability — Estimates the best stable model. For more information on
model stability, see “Unstable Models” on page 9-66.

• Filter — Specify a custom filter to open the Estimation Focus dialog box,
where you can enter a filter, as described in “Simple Passband Filter” on
page 4-36 or “Defining a Custom Filter” on page 4-36. This prefiltering
applies only for estimating the dynamics from input to output. The
disturbance model is determined from the estimation data.

In the MATLAB Command Window. Specify the focus as an argument in
the estimation function using the same options as in the GUI. For example,
use this command to emphasize the fit between the 5 and 8 rad/sec:

pem(data,4,'Focus',[5 8])

Specifying the Initial States
If you estimate state-space models using the iterative estimation algorithm
pem, you must specify how the algorithm treats initial states. This information
supports the estimation procedures “Estimating State-Space Models in
the GUI” on page 5-77 and “Using n4sid and pem to Estimate State-Space
Models” on page 5-79.

In the System Identification Tool GUI. Set the Initial state to one of
the following options:
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• Auto — Automatically chooses one of the following options based on the
estimation data. If initial states have negligible effect on the prediction
errors, the initial states are set to zero to optimize algorithm performance.

• Zero — Sets all initial states to zero.

• Estimate — Treats the initial states as an unknown vector of parameters
and estimates these states from the data.

• Backcast — Estimates initial states using a backward filtering method
(least-squares fit).

In the MATLAB Command Window. Specify the initial states as an
argument in the estimation function pem. For example, use this command
to estimate a fourth-order state-space model and set the initial states to be
estimated from the data:

m=pem(data,4,'InitialState','estimate')

For a complete list of values for the InitialState model property, see the
idss reference pages.
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Time-Series Models
A time series is one or more measured output channels with no measured
input.

System Identification Toolbox lets you estimate time-series spectra using
both time- and frequency-domain data (iddata objects). Time-series
spectra describe time-series variations using cyclic components at different
frequencies.

You can also estimate parametric autoregressive (AR), autoregressive and
moving average (ARMA), and state-space time-series models.

Note ARMA and state-space models are supported for time-domain data
only. Only single-output ARMA models are supported.

You can estimate the following types of model for time-series data:

• “Representing Time-Series Data for System Identification” on page 5-94

• “Estimating Spectral Models” on page 5-95

• “Estimating AR and ARMA Models” on page 5-97

• “Estimating State-Space Time-Series Models” on page 5-102

• “Example – Estimating Time Series” on page 5-103

Representing Time-Series Data for System
Identification
In the System Identification Tool GUI. When you import scalar or
multiple-output time series data into the GUI, leave the Input field empty.
For more information about importing data, see “Importing Data into the
System Identification Tool” on page 3-13.

In the MATLAB Command Window. To represent a time series vector or a
matrix s as an iddata object, use the following syntax:

y = iddata(s,[],Ts);

5-94



Time-Series Models

where Ts is the sampling interval. For continuous-time frequency domain
data, Ts is 0.

Estimating Spectral Models
This section describes the procedures required to estimate power spectra of
time-series models in the System Identification Tool GUI and the MATLAB
Command Window. It includes the following topics:

• “Estimating Spectral Models in the GUI” on page 5-95

• “Commands for Estimating Power Spectra” on page 5-96

Estimating Spectral Models in the GUI
The following procedure describes how to estimate time-series spectral models
in the System Identification Tool and assumes that you already have the
appropriate time-series data in the Data Board.

1 In the System Identification Tool window, select Estimate > Spectral
models to open the Spectral Model dialog box.

2 In the Method list, select the spectral analysis method you want to
use. For information about each method, see “Selecting the Method for
Computing Spectral Models” on page 5-37.

3 Specify the frequencies at which to compute the spectral model in one of the
following ways:

• In the Frequencies field, enter either a vector of values, a MATLAB
expression that evaluates to a vector, or a variable name of a vector in
the MATLAB workspace. For example, logspace(-1,2,500).

• Use the combination of Frequency Spacing and Frequencies to
construct the frequency vector of values:

– In the Frequency Spacing list, select Linear or Logarithmic
frequency spacing.
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Note For etfe, only the Linear option is available.

– In the Frequencies field, enter the number of frequency points.

For time-domain data, the frequency ranges from 0 to the Nyquist
frequency. For frequency-domain data, the frequency ranges from the
smallest to the largest frequency in the data set.

4 In the Frequency Resolution field, enter the frequency resolution, as
described in “Specifying the Frequency Resolution” on page 5-38. To use
the default value, enter default or leave the field empty.

5 In the Model Name field, enter the name of the correlation analysis model.
The model name should be unique in the Model Board.

6 Click Estimate to add this model to the Model Board in the System
Identification Tool window.

7 In the Spectral Model dialog box, click Close.

8 To view the estimated disturbance spectrum, select the Noise spectrum
check box in the System Identification Tool window. For more information
about working with this plot, see “Noise Spectrum Plots” on page 9-36.

To export the model to the MATLAB workspace, drag it to the To Workspace
rectangle in the System Identification Tool GUI. You can view the power
spectrum and the confidence intervals of the resulting idfrd model object
using the bode command.

Commands for Estimating Power Spectra
You can use the etfe, spa, and spafdr commands to estimate power spectra
of time series for both time-domain and frequency-domain data. The following
table provides a brief description of each function.

The resulting models are stored as an idfrd model object, which contains
SpectrumData and its variance. For multiple-output data, SpectrumData
contains power spectra of each output and the cross-spectra between each
output pair.
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For more information about models objects, see “Working with Model Objects”
on page 1-19.

Estimating Frequency Response of Time Series

Command Description

etfe Estimates a periodogram using Fourier analysis.

spa Estimates the power spectrum with its standard
deviation using spectral analysis.

spafdr Estimates power spectrum with its standard deviation
using a variable frequency resolution.

For example, suppose y is time-series data. The following commands estimate
the power spectrum g and the periodogram p, and plot both models with 3
standard deviation confidence intervals:

g = spa(y)
p = etfe(y)
bode(g,p,'sd',3)

For detailed information about these functions, see the corresponding
reference pages.

Estimating AR and ARMA Models
This section describes the procedures required to estimate AR and ARMA
time-series models in the System Identification Tool GUI and the MATLAB
Command Window. It includes the following topics:

• “Definition of AR and ARMA Models” on page 5-97

• “Estimating Polynomial Models in the GUI” on page 5-98

• “Estimating AR and ARMA Models in the MATLAB Command Window” on
page 5-101

Definition of AR and ARMA Models
For a single-output signal y(t), the AR model is given by the following equation:
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A q y t e t( ) ( ) ( )=

The AR model is a special case of the ARX model with no input.

The ARMA model for a single-output time-series is given by the following
equation:

A q y t C q e t( ) ( ) ( ) ( )=

The ARMA structure reduces to the AR structure for C(q)=1. The ARMA
model is a special case of the ARMAX model with no input.

For more information about polynomial models, see “Definition of Polynomial
Models” on page 5-43.

Estimating Polynomial Models in the GUI
The following procedure describes how to estimate AR and ARMA models
in the System Identification Tool and assumes that you already have the
appropriate data in the Data Board.

This procedure also requires that you select a model structure and specify
model orders and delays. For more information on how to estimate model
orders and delays, see “Estimating Orders and Delays in the GUI” on page
5-50.

If you are estimating a multiple-output AR model, you must specify order
matrix in the MATLAB workspace before estimation, as described in
“Specifying Multiple-Input and Multiple-Output ARX Orders” on page 5-57.

1 In the System Identification Tool window, select Estimate > Linear
parametric models to open the Linear Parametric Models dialog box.
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2 In the Structure list, select the polynomial model structure you want to
estimate from the following options:

• AR:[na]

• ARMA:[na nc]

This action updates the options in the Linear Parametric Models dialog box
to correspond with this model structure. For information about each model
structure, see “Definition of AR and ARMA Models” on page 5-97.

Note OE and BJ structures are not available for time-series models.

3 In the Orders field, specify the model orders, as follows:

• For single-output models. Enter the model orders according to the
sequence displayed in the Structure field.

• For multiple-output ARX models. (AR models only) Enter the
model orders directly, as described in “Specifying Multiple-Input and
Multiple-Output ARX Orders” on page 5-57. Alternatively, enter the
name of the matrix NA in the MATLAB workspace that stores model
orders, which is Ny-by-Ny.

Tip To enter model orders and delays using the Order Editor dialog box,
click Order Editor.

4 (For AR models only) Select the estimation Method as ARX or IV
(instrumental variable method). For more information about these
methods, see “Supported Estimation Algorithms” on page 1-16.

Note IV is not available for multiple-output data.

5 In the Name field, edit the name of the model or keep the default. The
name of the model should be unique in the Model Board.
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6 In the Initial state list, specify how you want the algorithm to treat initial
states. For more information about the available options, see “Specifying
the Initial States” on page 5-21.

Tip If you get an inaccurate fit, try setting a specific method for handling
initial states rather than choosing it automatically.

7 In the Covariance list, select Estimate if you want the algorithm to
compute parameter uncertainties. Effects of such uncertainties are
displayed on plots as model confidence regions.

To omit estimating uncertainty, select None. Skipping uncertainty
computation might reduce computation time for complex models and large
data sets.

8 (For ARMA only) To view the estimation progress in the MATLAB
Command Window, select the Trace check box. During estimation, the
following information is displayed for each iteration:

• Loss function — Equals the determinant of the estimated covariance
matrix of the input noise.

• Parameter values — Values of the model structure coefficients you
specified.

• Search direction — Change in parameter values from the previous
iteration.

• Fit improvements — Shows the actual versus expected improvements in
the fit.

9 Click Estimate to add this model to the Model Board in the System
Identification Tool window.

10 (For prediction-error method only) To stop the search and save the results
after the current iteration has been completed, click Stop Iterations. To
continue iterations from the current model, click the Continue iter button
to assign current parameter values as initial guesses for the next search.

11 To plot the model, select the appropriate check box in the Model Views
area of the System Identification Tool window. For more information about
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working with plots and validating models, see Chapter 9, “Plotting and
Validating Models”.

You can export the model to the MATLAB workspace for further analysis by
dragging it to the To Workspace rectangle in the System Identification Tool
window. For more information about working with models, see Chapter 10,
“Postprocessing and Using Estimated Models”.

Estimating AR and ARMA Models in the MATLAB Command
Window
You can estimate AR and ARMA models in the MATLAB Command Window.
For single-output time-series, the resulting models are idpoly model objects.
For multiple-output time-series, the resulting models are idarx model objects.
For more information about models objects, see “Working with Model Objects”
on page 1-19.

The following table provides a brief description of each command and specifies
whether single-output or multiple-output models are supported.

Commands for Estimating Polynomial Time-Series Models

Method Name Description Supported Data

ar Noniterative, least squares method
to estimate linear, discrete-time
single-output AR models.

Time-domain, time-series iddata
data object.

armax Iterative prediction-error method
to estimate linear, single-output
ARMAX models.

Time-domain, time-series iddata
data object.

arx Noniterative, least squares method
for estimating single-output and
multiple-output linear AR models.

Supports time- and frequency-domain
time-series iddata data.

ivar Noniterative, instrumental variable
method for estimating single-output
AR models.

Supports time-domain, time-series
iddata data.

The following code shows usage examples for estimating AR models:
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% For scalar signals
m = ar(y,na)
% For multiple-output vector signals
m = arx(y,na)
% Instrumental variable method
m = ivar(y,na)
% For ARMA, do not need to specify nb and nk
th = armax(y,[na nc])

The ar command provides additional options to let you choose the algorithm
for computing the least squares from a group of several popular techniques
from the following options:

• Burg’s method—A geometric lattice method.

• Yule-Walker approach.

• Covariance method.

Estimating State-Space Time-Series Models
This section describes the procedures required to estimate state-space
time-series models in the System Identification Tool GUI and the MATLAB
Command Window. It includes the following topics:

• “Definition of State-Space Time-Series Model” on page 5-102

• “Estimating State-Space Models in the MATLAB Command Window” on
page 5-103

Definition of State-Space Time-Series Model
The discrete-time state-space model for a time series is given by the following
equations:

x kT T Ax kT Ke kT
y kT Cx kT e kT
( ) ( ) ( )
( ) ( ) ( )

+ = +
= +

where T is the sampling interval and y(kT) is the output at time instant kT.

The time-series structure corresponds to the general structure with empty B
and D matrices.
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For information about general discrete-time and continuous-time structures
for state-space models, see “Definition of State-Space Models” on page 5-68.

Estimating State-Space Models in the MATLAB Command
Window
You can estimate single-output and multiple-output state-space models in
the MATLAB Command Window for time-domain and frequency-domain
data (iddata object).

The following table provides a brief description of each command. For more
information about each command, see the corresponding references pages.

The resulting models are idss model objects. For more information about
models objects, see “Working with Model Objects” on page 1-19.

Commands for Estimating State-Space Time-Series Models

Method Name Description

n4sid Noniterative, subspace estimation method for estimating
discrete-time linear state-space models.

Note When you use pem to estimate a state-space model, n4sid
creates the initial model.

pem Estimates linear, discrete-time time-series models using iterative
estimation method that minimizes the prediction error.

Example – Estimating Time Series
Here is an example where you can simulate a time series, compare spectral
estimates and covariance function estimates, and also the predictions of the
model.

ts0 = idpoly([1 -1.5 0.7],[]);
ir = sim(ts0,[1;zeros(24,1)]);
% Define the true covariance function
Ry0 = conv(ir,ir(25:-1:1));
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e = idinput(200,'rgs');
% Define y vector
y = sim(ts0,e);
% iddata object with sampling time 1
y = iddata(y)
plot(y)
per = etfe(y);
speh = spa(y);
ffplot(per,speh,ts0)
% Estimate a second-order AR model
ts2 = ar(y,2);
ffplot(speh,ts2,ts0,'sd',3)
% Get covariance function estimates
Ryh = covf(y,25);
Ryh = [Ryh(end:-1:2),Ryh]';
ir2 = sim(ts2,[1;zeros(24,1)]);
Ry2 = conv(ir2,ir2(25:-1:1));
plot([-24:24]'*ones(1,3),[Ryh,Ry2,Ry0])
% The prediction ability of the model
compare(y,ts2,5)
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Overview of Nonlinear Black-Box Modeling
System Identification Toolbox lets you estimate discrete-time nonlinear
black-box models for single-output or multiple-output time-domain data. It
supports the following types of nonlinear black-box models:

• Nonlinear ARX models.

For an example of estimating this type of model, see “Example – Estimating
Nonlinear ARX Model for a Two-Tank System” on page 6-15.

• Hammerstein-Wiener models.

For an example of estimating this type of model, see “Example – Estimating
Hammerstein-Wiener Model for a Two-Tank System” on page 6-44.

You can estimate these models both in the System Identification Tool GUI and
in the MATLAB Command Window.

If you are working in the MATLAB Command Window, use the nlarx
and nlhw commands to construct and estimate the nonlinear ARX and
Hammerstein-Wiener models, respectively. Nonlinear ARX models are
idnlarx model objects, and Hammerstein-Wiener models are idnlhw model
objects. For detailed information about these commands and objects, see the
corresponding reference pages. For general information on working with
model objects, see “Working with Model Objects” on page 1-19.

This section discusses the following topics:

• “Before You Begin” on page 6-2

• “Using Nonlinear Black-Box Models” on page 6-3

Before You Begin
You can estimate discrete-time black-box models for data with the following
characteristics:

• Time-domain input-output or time-series data.

6-2



Overview of Nonlinear Black-Box Modeling

Note Time series are supported for nonlinear ARX models only.

• Single-output or multiple-output data.

Before you begin estimating models, import your data into MATLAB, and
represent the data in one of the following ways:

• In the System Identification Tool GUI. Import the data into the GUI to
make the data available to System Identification Toolbox.

• In the MATLAB Command Window. Represent your data as an iddata
or idfrd object.

For more information about representing data for system identification, see
Chapter 3, “Representing Data for System Identification”.

To examine the data features, plot the data on a time plot or an estimated
frequency-response plot. You can preprocess your data by interpolating
missing values, filtering to emphasize a specific frequency range, or
resampling using a different time interval.

Note For nonlinear modeling, do not remove offsets and linear trends from
the measured signals.

For more information about types of available date plots and
data-preprocessing operations, see Chapter 4, “Plotting and Preprocessing
Data”.

Using Nonlinear Black-Box Models
After estimating both nonlinear black-box models, you can use present
to view parameter values, standard deviations of the parameters, loss
function, and Akaike’s Final Prediction Error (FPE) Criterion in the MATLAB
Command Window.
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You can use the sim command to simulate the model, or the predict command
to predict the model output. For more information about simulation and
prediction, see “Simulating and Predicting Model Output” on page 10-13.

You can linearize nonlinear ARX and Hammerstein-Wiener models using
lintan or linapp. lintan provides a small-signal tangent linearization about
a specific operating point. linapp computes a linear approximation for a
nonlinear model of a given input. For more information about these functions,
see the corresponding reference pages.

After linearization, you can perform linear analysis on your models and use
the models with Control System Toolbox. For more information, see “Using
Models with Control System Toolbox” on page 10-20.
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Estimating Nonlinear ARX Models
You can estimate both continuous-time and discrete-time nonlinear ARX
models for data with the following characteristics:

• Time-domain input-output data or time-series data.

• Single-output or multiple-output data.

For more information about representing your data for system identification,
see Chapter 3, “Representing Data for System Identification”.

This section discusses the following topics:

• “Definition of the Nonlinear ARX Model” on page 6-5

• “Using Regressors” on page 6-6

• “Nonlinearity Estimators for Nonlinear ARX Models” on page 6-9

• “Estimating Nonlinear ARX Models in the GUI” on page 6-9

• “Using nlarx to Estimate Nonlinear ARX Models” on page 6-11

For an example of estimating a nonlinear ARX model using the System
Identification Tool GUI, see “Example – Estimating Nonlinear ARX Model for
a Two-Tank System” on page 6-15.

Definition of the Nonlinear ARX Model
The nonlinear ARX structure models dynamic systems using a parallel
combination of nonlinear and linear blocks, as shown in the following figure.
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The nonlinear and linear functions are expressed in terms of variables called
regressors, which are functions of measured input-output data. For more
information about regressors, see “Using Regressors” on page 6-6.

The predicted output ˆ( )y t of a nonlinear model at time t is given by the
following general equation:

ˆ( ) ( ( ))y t F x t=

where x(t) represents the regressors. F is a nonlinear regression
function, which is approximated by the nonlinearity estimators. For a
list of nonlinearity estimators supported by nonlinear ARX models, see
“Nonlinearity Estimators for Nonlinear ARX Models” on page 6-9.

The function F can include both linear and nonlinear functions of x(t), as
shown in the previous diagram. You can specify which regressors to use a
inputs to the nonlinear block.

The following equation provides a general description of F:

F x xk
k

d

k k( ) = −( )( )
=
∑α κ β γ

1

where κ is the unit nonlinear function, d is the number of nonlinearity units,

and αk , βk , and γk are the parameters of the nonlinearity estimator.

Using Regressors
System Identification Toolbox supports the following types of regressors for
nonlinear ARX models:

• Standard regressors — Past input u(t) and output signals y(t), computed
automatically as delay transformations for specified model orders.

• Custom regressors — Products, powers, and other MATLAB expressions
of input and output variables that you specify.
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Specifying Model Order and Delays
You must specify the following model orders for computing standard
regressors:

• na — The number of past output terms used to predict the current output.

• nb — The number of past input terms used to predict the current output.

• nk — The delay from input to the output in terms of the number of samples.
This value defines the least delayed input regressor.

The meaning of na and nb is similar to the linear-ARX model parameters in
the sense that na represents the number of output terms and nb represents the
number of input terms. nk represents the minimum input delay from an input
to an output. For more information about the linear ARX model structure, see
“Definition of Polynomial Models” on page 5-43.

Note The total number of regressors in the model must be greater than zero.
If you only need to use custom regressors, set na=nb=nk=0 to omit creating
standard regressors.

Example – Types of Regressors Computed from Model Orders
and Delays
This example describes the regressors computed by System Identification
Toolbox based on specified model orders and delays.

Suppose that you specify a nonlinear ARX model with a minimum of a
two-sample input delay and the number of input terms is nb=2. System
Identification Toolbox computes the following standard regressors from the
input signal:

• u(t-2)

• u(t-3)

If you specify that the number of output terms as na=4, System Identification
Toolbox computes the following standard regressors from the output signals:
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• y(t-1)

• y(t-2)

• y(t-3)

• y(t-4)

Note You cannot modify the minimum output delay—it is set to 1 sample.

If you have physical insight that your current output depends on specific
delayed inputs and outputs, select the appropriate model orders to compute
the required regressors.

Using Custom Regressors
In general, custom regressors are nonlinear functions of the standard
regressors. You can specify custom regressors, such as tan(u(t-1)), u(t-1)2, or
u(t-1)y(t-3).

In the System Identification Tool GUI. You can create custom regressors
in the Model Regressors dialog. For more information, see “Estimating
Nonlinear ARX Models in the GUI” on page 6-9.

In the MATLAB Command Window. Use the customreg or polyreg
commands to construct custom regressors in terms of input-output variables.
For more information, see the corresponding reference pages.

The linear block includes all standard and custom regressors. However, you
can include specific standard and custom regressors in your nonlinear block to
fine-tune the model structure.

To get a linear-in-the-parameters ARX model structure, you can exclude the
nonlinear block from the model structure completely. When using only a linear
block with custom regressors, you can create the simplest types of nonlinear
models. In this case, the custom regressors capture the nonlinearities and
the estimation routine computes the weights of the standard and custom
regressors in the linear block to predict the output.
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Nonlinearity Estimators for Nonlinear ARX Models
Nonlinear ARX models support the following nonlinearity estimators:

• Sigmoid Network

• Tree Partition

• Wavelet Network

• Custom Network

• Neural Network

Note You must have Neural Network Toolbox to specify neural network
objects as nonlinearities.

You can exclude the nonlinearity function from the model structure. In this
case, the model includes all standard and custom regressors and is linear in
the parameters.

In the System Identification Tool GUI. You can omit the nonlinear block
by selecting None for the Nonlinearity.

In the MATLAB Workspace. You can omit the nonlinear block by setting
the Nonlinearity property value to 'Linear'. For more information, see the
nlarx and idnlarx reference pages

For a description of each nonlinearity estimator, see “Supported Nonlinearity
Estimators” on page 6-60.

Estimating Nonlinear ARX Models in the GUI
The following procedure describes how to estimate a nonlinear ARX model in
the System Identification Tool GUI and assumes that you already have the
appropriate data in the Data Board. For more information about preparing
your data, see “Overview of Nonlinear Black-Box Modeling” on page 6-2.

1 In the System Identification Tool window, select Estimate > Nonlinear
models to open the Nonlinear Models dialog box. The Model Type tab
is selected.
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6 Estimating Nonlinear Black-Box Models

2 In the Model Structure list, select Nonlinear ARX.

This action updates the options in the Nonlinear Models dialog box to
correspond to this model structure. For information about this model
structure, see “Definition of the Nonlinear ARX Model” on page 6-5.

3 In the Model name field, edit the name of the model, or keep the default
name. The name of the model should be unique in the Model Board.

4 (Optional) If you want to try refining a previously estimated model, select
the name of this model in the Initial model list.

Note The model structure and algorithm properties of the initial model
populate the fields in the Nonlinear Models dialog box.

A model is available in the Initial model list under the following
conditions:

• The model exists in the System Identification Tool window.

• The number of model inputs and outputs matches the dimensions
of the Working Data (estimation data) you selected in the System
Identification Tool window.

5 Keep the default settings in the Nonlinear Models dialog box that specify
the model structure and the algorithm, or modify the following settings:

• In the Regressors tab, change the input delay of the input signals.

To gain insight into possible input delay values, click Infer Input
Delay. This action opens the Infer Input Delay dialog box.

• In the Regressors tab, change the number of terms to include in the
nonlinear block.

• In the Regressors tab, click Edit Regressors to select which regressors
are included in the nonlinear block. This action opens the Model
Regressors dialog box. You can also use this dialog box create custom
regressors.

• In the Model Properties tab, select and configure the nonlinearity
estimator, and choose whether to include the linear block. To use all
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standard and custom regressors in the linear block only, you can exclude
the nonlinear block by choosing None.

For more information about the available options, click Help in the
Nonlinear Models dialog box to open the GUI help.

6 Click Estimate to add this model to the Model Board in the System
Identification Tool window.

The Estimation tab displays the estimation progress and results.

7 To plot this model, select the appropriate check box in the Model Views
area of the System Identification Tool window. For more information about
working with plots and validating models, see Chapter 9, “Plotting and
Validating Models”.

If you get an inaccurate fit, try estimating a new model with different orders
or nonlinearity estimator.

You can export the model to the MATLAB workspace for further analysis by
dragging it to the To Workspace rectangle in the System Identification Tool
window. For more information about working with models, see Chapter 10,
“Postprocessing and Using Estimated Models”.

Using nlarx to Estimate Nonlinear ARX Models
You can estimate nonlinear ARX models using nlarx. The resulting models
are stored as idnlarx model objects.

You can also use pem to refine parameter estimates of an existing nonlinear
ARX model, as described in “Refining Models” on page 1-46.

This section discusses the following topics:

• “General nlarx Syntax” on page 6-12

• “Example – Using nlarx to Estimate Nonlinear ARX Models ” on page 6-13
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General nlarx Syntax
Use the following general syntax to both configure and estimate nonlinear
ARX models:

m = nlarx(data,'na',na,
'nb',nb,
'nk',nk,
Nonlinearity,

'Property1',Value1,...,
'PropertyN',ValueN)

where data is the estimation data. na, nb, and nk specify the model orders
and delays. For more information about model orders, see “Specifying Model
Order and Delays” on page 6-7.

Nonlinearity specifies the nonlinearity estimator object as 'sigmoidnet',
'wavenet', 'treepartition', 'customnet', 'neuralnet', or 'linear'.

The property-value pairs specify any idnlarx model properties that configure
the estimation algorithm. You can enter all model property-value pairs and
top-level algorithm properties as a comma-separated list in nlarx.

For multiple inputs and outputs, na, nb, and nk are described in “Specifying
Multiple-Input and Multiple-Output ARX Orders” on page 5-57.

You can specify different nonlinearity estimators for different output channels
by setting Nonlinearity to an object array. For example:

m = nlarx(data,[[2 1; 0 1] [2;1] [1;1]],...
[wavenet;sigmoidnet('num',7)])

To specify the same nonlinearity for all outputs, set Nonlinearity to a single
nonlinearity estimator. For example:

m = nlarx(data,[[2 1; 0 1] [2;1] [1;1]],...
sigmoidnet('num',7))

For detailed information about the nlarx and idnlarx properties and values,
see the corresponding reference pages.
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For more information about validating your models, see Chapter 9, “Plotting
and Validating Models”. To learn more about simulation and prediction
output using your models, see Chapter 10, “Postprocessing and Using
Estimated Models”.

Note You do not need to construct the model object using idnlarx before
estimation.

Example – Using nlarx to Estimate Nonlinear ARX Models
This example uses nlarx to estimate a nonlinear ARX model for the two-tank
system, as described in “Example – Estimating Nonlinear ARX Model for
a Two-Tank System” on page 6-15.

Prepare the data for estimation using the following commands:

load twotankdata
z = iddata(y, u, 0.2);
ze = z(1:1000); zv = z(1001:3000);

Estimate several models using different model orders, delays, and nonlinearity
settings:

m1 = nlarx(ze,[2 2 1],'wav');
m2 = nlarx(ze,[2 2 3],wavenet);
m3 = nlarx(ze,[2 2 3],wavenet('num',8));
m4 = nlarx(ze,[2 2 3],wavenet('num',8),...

'nlr', [1 2]);
m5 = nlarx(ze,[2 2 3],sigmoidnet('num',14),...

'nlr',[1 2]);

Compare the resulting models by plotting the model outputs on top of the
measured output:

compare(zv, m1,m2,m3,m4,m5)
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MATLAB responds with the following plot:
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Example – Estimating Nonlinear ARX Model for a
Two-Tank System

This example discusses the following topics:

• “About This Example” on page 6-15

• “Before You Begin” on page 6-16

• “Estimating Nonlinear ARX Model with Default Settings” on page 6-21

• “Plotting Nonlinearity Cross-Sections” on page 6-25

• “Changing the Model Structure” on page 6-28

• “Selecting a Subset of Regressors in the Nonlinear Block” on page 6-30

• “Changing the Nonlinearity Estimator” on page 6-32

• “Selecting the Best Model” on page 6-33

About This Example
By performing the steps in this example, you get an overview of how to
estimate nonlinear ARX models using the System Identification Tool GUI.
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In this example, you estimate a nonlinear ARX model to fit measured
single-input and single-output (SISO) data for a two-tank system, shown in
the following figure.

#�� ��

#�� �	

Two-Tank System

In the two-tank system, water pours through a pipe into Tank 1, drains into
Tank 2, and leaves the system through a small hole at the bottom of Tank 2.
The measured input u(t) to the system is the voltage applied to the pump that
feeds the water into Tank 1 (in volts). The measured output y(t) is the height
of the water in the lower tank (in meters).

Based on Bernoulli’s law—which states that water flowing through a small
hole at the bottom of a tank depends nonlinearly on the level of the water
in the tank—you expect the relationship between the input and the output
data to be nonlinear.

The sample data is provided in twotankdata.mat, which you install with the
latest version of System Identification Toolbox. This MAT-file contains SISO
time-domain data of 3000 samples with a sampling interval of 0.2 sec.

Before You Begin
Before you can perform the tasks described in this tutorial, you must do the
following preparation:

• “Loading Data into the MATLAB Workspace” on page 6-17
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• “Creating iddata Objects” on page 6-17

• “Starting the System Identification Tool” on page 6-19

• “Loading Data into the System Identification Tool” on page 6-20

Loading Data into the MATLAB Workspace
Load the sample data in twotankdata.mat by typing the following command
at the MATLAB prompt:

load twotankdata.mat

This command loads the following two variables into MATLAB workspace:

• y is the output data.

• u is the input data.

The input data is the voltage applied to the pump that feeds the water into
Tank 1 (in volts), and the output is the water height in Tank 2 (in meters).

Creating iddata Objects
The iddata constructor requires three arguments for time-domain data and
has the following syntax:

data_obj = iddata(output,input,sampling_interval);

Use these commands to create two data objects, ze and zv:

Ts = 0.2; % Sampling interval is 0.5 min
z = iddata(y,u,Ts);
% First 1000 samples used for estimation
ze = z(1:1000);
% Remaining samples used for validation
zv = z(1001:3000);

ze contains data for model estimation and zv contains data for model
validation. Ts is the sampling interval.
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To view the properties of an iddata object, use the get command. For
example, type this command to get the properties of the estimation data:

get(ze)

MATLAB returns the following data properties and values:

Domain: 'Time'
Name: []

OutputData: [1000x1 double]
y: 'Same as OutputData'

OutputName: {'y1'}
OutputUnit: {''}
InputData: [1000x1 double]

u: 'Same as InputData'
InputName: {'u1'}
InputUnit: {''}

Period: Inf
InterSample: 'zoh'

Ts: 0.2000
Tstart: 0.2000

SamplingInstants: [1000x0 double]
TimeUnit: ''

ExperimentName: 'Exp1'
Notes: []

UserData: []
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To modify properties, use dot notation or the set command. For example, to
assign channel names and units that label plot axes, type the following syntax
at the MATLAB prompt:

% Set time units to minutes
ze.TimeUnit = 'sec';
% Set names of input channels
ze.InputName = 'Voltage';
% Set units for input variables
ze.InputUnits = 'V';
% Set name of output channel
ze.OutputName = 'Height';
% Set unit of output channel
ze.OutputUnits = 'm';

% Set validation data properties
zv.TimeUnit = 'sec';
zv.InputName = 'Voltage';
zv.InputUnits = 'V';
zv.OutputName = 'Height';
zv.OutputUnits = 'm';

You can verify that the InputName property of ze is changed, or “index into”
this property, by typing the following syntax:

ze.inputname

Note Property names are not case sensitive.

For detailed information about iddata objects, see “Creating iddata Objects”
on page 3-31.

Starting the System Identification Tool
To open the System Identification Tool GUI, type the following command at
the MATLAB prompt:

ident
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6 Estimating Nonlinear Black-Box Models

The default session name, Untitled, displays in the title bar.

Loading Data into the System Identification Tool
To import the data object you created in “Creating iddata Objects” on page
6-17, perform the following procedure:

1 In the System Identification Tool window, select Import data > Data
object to open the Import Data dialog box:

2 In the Import Data dialog box, type ze in the Object field to import the
estimation data. Press Enter. This action enters the object information
into the fields.
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Click More to view the following additional information about this data,
including channel names and units.

3 Click Import to add the icon named ze to the Data Board.

4 In the Import Data dialog box, type zv in the Object field to import the
validation data. Press Enter.

5 Click Import to add the icon named zv to the Data Board.

6 In the Import Data dialog box, click Close.

7 In the System Identification Tool window, drag the ze icon to the Working
Data rectangle, and then drag the zv icon to the Validation Data
rectangle.

Estimating Nonlinear ARX Model with Default
Settings
After preparing the data, as described in “Before You Begin” on page 6-16, you
are ready to estimate the nonlinear ARX model.
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1 In the System Identification Tool window, select Estimate > Nonlinear
models to open the Nonlinear Models dialog box:

The Model Type tab is already selected and the default Model Structure
is Nonlinear ARX.

In the Regressors tab, the model orders for both Input Channels and
Output Channels are specified by the Delay of 1 and No. of Terms
equal to 2. Thus, the model output y(t) it related to the input u(t) via the
following nonlinear autoregressive equation:

y t f y t y t u t u t( ) ( ), ( ), ( ), ( )= − − − −( )1 2 1 2

where f is the nonlinearity estimator you select in the Model Properties
tab.
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2 Select the Model Properties tab.

The Nonlinearity represents the nonlinear function f and is already set
to Wavelet Network, by default. The number of units for the nonlinearity
estimator is set to Select automatically, which lets the algorithm search
for the best number of units during estimation.

3 Click Estimate. This selection adds the model nlarx1 to the Model Board
in the System Identification Tool window, as shown in the following figure.

6-23



6 Estimating Nonlinear Black-Box Models

The Nonlinear Models dialog box displays the following estimation
information in the Estimation tab:

Note The Fit (%) is computed using the estimation data set, and not the
validation data set. However, the model output plot show the fit for the
validation data set.

4 In the System Identification Tool window, select the Model output check
box. Simulation of the model output uses the input validation data as input
to the model. It plots the simulated output on top of the output validation
data.
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The Best Fits area of the Model Output plot shows that the agreement
between the model output and the validation-data output is 60.91%.

Plotting Nonlinearity Cross-Sections
Perform the following procedure to view the shape of the nonlinearity as a
function of regressors on a Nonlinear ARX Model plot. For more information
about working with Nonlinear ARX Model plot, see “Nonlinear ARX Plots”
on page 9-48.
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1 In the System Identification Tool window, select the Nonlinear ARX check
box to view the nonlinearity cross-sections.

By default, the plot shows the relationship between the output regressors
Height(t-1) and Height(t-2). This plot shows a regular plane in the
following figure. Thus, the relationship is approximately linear plane.
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2 In the Nonlinear ARX Model Plot window, keep the default value for
Regressor 1 at Voltage(t-1). Set Regressor 2 to Voltage(t-2). Click
Apply.

The relationship between these regressors is nonlinear, as shown in the
following plot.

3 To rotate the nonlinearity surface, select Style > 3D Rotate and drag
the plot to a new orientation.
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4 To display a 1–D cross-section for Regressor 1, set Regressor 2 to none,
and click Apply. The following figure shows the resulting nonlinearity
magnitude for Regressor 1, which is Voltage(t-1).

Changing the Model Structure
After estimating the nonlinear ARX model with default settings, as described
in “Estimating Nonlinear ARX Model with Default Settings” on page 6-21, you
can try to improve the fit by modifying the input delay and the nonlinearity
properties. Typically, you select model orders and delays by trial and error.

1 In the Nonlinear Models dialog box, select the Model Type tab, and then
select the Regressors tab.

2 For the Voltage input channel, double-click the corresponding Delay cell,
type 3, and press Enter.
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This action updates the Resulting Regressors list. The list now includes
Voltage(t-3) and Voltage(t-4)—two terms with a minimum input delay
of 3 samples.

3 Click Estimate.

This action adds the model nlarx2 to the Model Board in the System
Identification Tool window and the Model Output plot is updated to include
this model. The Nonlinear Models dialog box displays the new estimation
information in the Estimation tab.

The Best Fits area of the Model Output plot shows that nlarx2 fit is
85.36%.

4 In the Nonlinear Models dialog box, select the Model Properties tab.

5 For Number of units in nonlinear block, select Enter, and type 6.
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6 Click Estimate.

This action adds the model nlarx3 to the Model Board in the System
Identification Tool window. It also updates the Model Output plot, as
shown in the following figure.

The Best Fits area of the Model Output plot shows that the nlarx3 fit is
86.28%.

Selecting a Subset of Regressors in the Nonlinear
Block
By default, all standard and custom regressors are used in the nonlinear
block. In this example, you only have standard regressors. For more
information about regressors, see “Using Regressors” on page 6-6.

After improving the model accuracy by changing the model structure, as
described in “Changing the Model Structure” on page 6-28, you can try to
improve the fit by selecting a subset of standard regressors that enter as
inputs to the nonlinear block.
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1 In the Nonlinear Models dialog box, select the Model Type tab, and then
select the Regressors tab.

2 Click Edit Regressors. This action opens the Model Regressors dialog box.

3 In the Model Regressors dialog box, clear the following check boxes:

• Height(t-2)

• Voltage(t-1)

Click OK.

This action excludes Height(t-2) and Voltage(t-1) from the list of inputs
to the nonlinear block.
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4 Click Estimate.

This action adds the model nlarx4 to the Model Board in the System
Identification Tool window. It also updates the Model Output plot, as
shown in the following figure.

The Best Fits area of the Model Output plot shows that the nlarx4 fit
is 86.39%, which is only a fraction of a percent improvement from the
previous fit.

Changing the Nonlinearity Estimator
In this portion of the example, you improve the fit of the model you estimated
with default settings, nlarx1, by changing the nonlinearity estimator.

1 In the Nonlinear Models dialog box, select the Model Type tab.

2 In the Initial model list, select nlarx1.

3 Select the Model Properties tab.
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4 In the Nonlinearity list, select Sigmoid Network.

5 In the Number of units in nonlinear block field, enter 6.

6 Click Estimate.

This action adds the model nlarx5 to the Model Board in the System
Identification Tool window. It also updates the Model Output plot, as
shown in the following figure.

The Best Fits area of the Model Output plot shows that the nlarx5 fit is
91.86%.

Selecting the Best Model
The best model is the simplest model that accurately describes the
dynamics. In this example, the best model fit was produced in “Changing the
Nonlinearity Estimator” on page 6-32, as shown in the following figure.
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Estimating Hammerstein-Wiener Models
You can estimate both continuous-time and discrete-time
Hammerstein-Wiener models for data with the following characteristics:

• Time-domain input-output data.

Note Hammerstein-Wiener models do not support time-series data, where
there is no input.

• Single-output or multiple-output data.

For more information about representing your data for system identification,
see Chapter 3, “Representing Data for System Identification”.

This section discusses the following topics:

• “Definition of the Hammerstein-Wiener Model” on page 6-35

• “Nonlinearity Estimators for Hammerstein-Wiener Models” on page 6-37

• “Estimating Hammerstein-Wiener Models in the GUI” on page 6-38

• “Using nlhw to Estimate Hammerstein-Wiener Models” on page 6-39

For an example of estimating a Hammerstein-Wiener model using the System
Identification Tool GUI, see “Example – Estimating Hammerstein-Wiener
Model for a Two-Tank System” on page 6-44.

Definition of the Hammerstein-Wiener Model
The Hammerstein-Wiener structure models dynamic systems using up to two
static nonlinear blocks in series with a linear block.

The input signal passes through the first nonlinear block, a linear block,
and a second nonlinear block to produce the output signal, as shown in the
following figure.
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This model structure represents a nonlinear system as a linear system that
is modified by static input and output nonlinearities. Thus, the linear model
provides a reference point for estimating the nonlinear contributions in a
system.

The following general equation describes the Hammerstein-Wiener structure:

w t f u t

x t
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which contains the following variables:

• u(t) and y(t) are the inputs and outputs for the system, respectively.

• f and h are nonlinear functions that corresponding to the input and output
nonlinearities, respectively.

For multiple inputs and multiple outputs, f and h are defined
component-wise.

• w(t) and x(t) are internal variables.

w(t) has the same dimension as u(t). x(t) has the same dimension as y(t).

• B(q) and F(q) in the linear dynamic block are polynomials in the backward
shift operator, as described in “Definition of Polynomial Models” on page
5-43.

For ny outputs and nu inputs, the linear block is a trasnfer function matrix
containing entries in the following form:

B q

F q
j i

j i

,

,

( )

( )

where j = 1,2,...,ny and i = 1,2,...,nu.
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If only the input nonlinearity is present, the model is called the Hammerstein
model. If only the output nonlinearity is present, the model is called the
Wiener model.

You must specify the following model orders for the linear block:

• nb — The number of zeros plus 1.

• nf — The number of poles.

• nk — The delay from input to the output in terms of the number of samples.

For ny outputs and nu inputs, nb, nf, and nk are ny-by-nu matrices. You can
specify a nonlinearity for only certain inputs and outputs, and exclude the
nonlinearity for other inputs and outputs.

Nonlinearity Estimators for Hammerstein-Wiener
Models
Hammerstein-Wiener models support the following nonlinearity estimators
for estimating the parameters of its input and output nonlinear blocks:

• Dead Zone

• Piecewise Linear

• Saturation

• Sigmoid Network

• Wavelet Network

You can exclude either the input nonlinearity or the output nonlinear from
the model structure.

In the System Identification Tool GUI. Exclude a nonlinearity for a
specific channel by selecting None.

In the MATLAB Command Window. Exclude a nonlinearity for a specific
channel by specifying the unitgain value for the InputNonlinearity or
OutputNonlinearity properties. For more information about estimation
objects and their properties, see nlhw and idnlhw reference pages.
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For a description of each nonlinearity estimator, see “Supported Nonlinearity
Estimators” on page 6-60.

Estimating Hammerstein-Wiener Models in the GUI
The following procedure describes how to estimate a Hammerstein-Wiener
model in the System Identification Tool GUI and assumes that you already
have the appropriate data in the Data Board. For more information about
preparing your data, see “Overview of Nonlinear Black-Box Modeling” on
page 6-2.

1 In the System Identification Tool window, select Estimate > Nonlinear
models to open the Nonlinear Models dialog box. The Model Type tab is
shown.

2 In the Model Structure list, select Hammerstein-Wiener.

This action updates the options in the Nonlinear Models dialog box to
correspond to this model structure. For information about this model
structure, see “Definition of the Hammerstein-Wiener Model” on page 6-35.

3 In the Model name field, edit the name of the model, or keep the default
name. The name of the model should be unique in the Model Board.

4 (Optional) If you want to try refining a previously estimated model, select
the name of this model in the Initial model list.

Note The model structure and algorithm properties of the initial model
populate the fields in the Nonlinear Models dialog box.

A model is available in the Initial model list under the following
conditions:

• The model exists in the System Identification Tool window.

• The number of model inputs and outputs matches the dimensions
of the Working Data (estimation data) you selected in the System
Identification Tool window.
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5 Keep the default settings in the Nonlinear Models dialog box that specify
the model structure and the algorithm, or modify the following settings:

• In the I/O Nonlinearity tab, specify whether to include or exclude the
input and output nonlinearities. For multiple-input and multiple-output
systems, you can choose to apply nonlinearities only to specific input
and output channels.

• In the I/O Nonlinearity tab, change the input and output nonlinearity
types and configure the nonlinearity settings.

• In the Linear Block tab, specify the model orders and delays. To gain
insight into possible delays, click Infer Input Delay.

For more information about the available options, click Help in the
Nonlinear Models dialog box to open the GUI help.

6 Click Estimate to add this model to the Model Board in the System
Identification Tool window.

The Estimation tab displays the estimation progress and results.

7 To plot this model, select the appropriate check box in the Model Views
area of the System Identification Tool window. For more information about
working with plots and validating models, see Chapter 9, “Plotting and
Validating Models”.

If you get an inaccurate fit, try estimating a new model with different orders
or nonlinearity estimator.

You can export the model to the MATLAB workspace for further analysis by
dragging it to the To Workspace rectangle in the System Identification Tool
window. For more information about working with models, see Chapter 10,
“Postprocessing and Using Estimated Models”.

Using nlhw to Estimate Hammerstein-Wiener Models
You can estimate Hammerstein-Wiener models using the nlhw command. The
resulting models are stored as idnlhw model objects.

You can also use pem to refine parameter estimates of an existing
Hammerstein-Wiener model, as described in “Refining Models” on page 1-46.
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This section discusses the following topics:

• “General nlhw Syntax” on page 6-40

• “Example – Using nlhw to Estimate Hammerstein-Wiener Models ” on
page 6-42

General nlhw Syntax
Use the following general syntax to both configure and estimate
Hammerstein-Wiener models:

m = nlhw(data,'nb',nb,
'nf',nf,
'nk',nk,
InputNonlinearity,
OutputNonlinearity,

'Property1',Value1,...,
'PropertyN',ValueN)

where data is the estimation data. nb, nf, and nk specify the orders and
delays of the linear OE model. For more information about model orders, see
“Definition of the Hammerstein-Wiener Model” on page 6-35.

InputNonlinearity specifies the input static nonlinearity estimator object
as 'pwlinear', 'deadzone', 'saturation', 'sigmoidnet', 'wavenet',
'customnet', or 'unitgain'. Similarly, OutputNonlinearity specifies the
output static nonlinearity estimator object.
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The property-value pairs specify any idnlhw model properties that configure
the estimation algorithm. You can enter all model property-value pairs
and top-level algorithm properties as a comma-separated list in nlhw. For
example, you can control the iterative search for a best fit using the following
properties:

m = nlhw(data,'nb',nb,
'nf',nf,
'nk',nk,
InputNonlinearity,
OutputNonlinearity,

'MaxIter',N,
'Tolerance',tol,
'LimitError',lim,
'Trace','on')

For nu inputs and ny outputs, na, nb, and nk are ny-by-nu matrices whose
i-jth entry specifies the order and delay of the transfer function from the
jth input to the ith output.

You can specify different nonlinearity estimators for different output channels
by setting InputNonlinearity or OutputNonlinearity to an object array.
For example:

m = nlarx(data,[nb,nf,nk],...
[sigmoidnet;pwlinear],...
[])

For detailed information about nlhw and idnlhw, see the corresponding
reference pages.

For more information about validating your models, see Chapter 9, “Plotting
and Validating Models”. To learn more about simulation and prediction
output using your models, see Chapter 10, “Postprocessing and Using
Estimated Models”.

Note You do not need to construct the model object using idnlhw before
estimation.
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Example – Using nlhw to Estimate Hammerstein-Wiener
Models
This example uses nlhw to estimate a Hammerstein-Wiener model for the
two-tank system, as described in “Example – Estimating Hammerstein-Wiener
Model for a Two-Tank System” on page 6-44.

Prepare the data for estimation using the following commands:

load twotankdata
z = iddata(y, u, 0.2);
ze = z(1:1000); zv = z(1001:3000);

Estimate several models using different model orders, delays, and nonlinearity
settings:

m1 = nlhw(ze,[2 3 1],'pwl','pwl');
m2 = nlhw(ze,[2 2 3],'pwl','pwl');
m3 = nlhw(ze,[2 2 3], pwlinear('num',13),...

pwlinear('num',10));
m4 = nlhw(ze,[2 2 3], sigmoidnet('num',2),...

pwlinear('num',10));
m5 = nlhw(ze,[2 2 3], 'dead','sat');

Compare the resulting models by plotting the model outputs on top of the
measured output:

compare(zv,m1,m2,m3,m4,m5)
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MATLAB responds with the following plot:

6-43



6 Estimating Nonlinear Black-Box Models

Example – Estimating Hammerstein-Wiener Model for a
Two-Tank System

This example discusses the following topics:

• “About This Example” on page 6-44

• “Estimating Hammerstein-Wiener Models with Default Settings” on page
6-46

• “Plotting the Nonlinearities and Linear Transfer Function” on page 6-50

• “Changing the Model Structure” on page 6-54

• “Changing the Nonlinearity Estimator” on page 6-56

• “Selecting the Best Model” on page 6-58

About This Example
By performing the steps in this example, you get an overview of how
to estimate nonlinear Hammerstein-Wiener models using the System
Identification Tool GUI. Compare your results to the results obtained in the
example on estimating nonlinear ARX models, as described in “Example –
Estimating Nonlinear ARX Model for a Two-Tank System” on page 6-15.
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In this tutorial, you estimate a Hammerstein-Wiener model to fit measured
single-input and single-output (SISO) data for a two-tank system, shown in
the following figure.

#�� ��

#�� �	

Two-Tank System

In the two-tank system, water pours through a pipe into Tank 1, drains into
Tank 2, and leaves the system through a small hole at the bottom of Tank 2.
The measured input u(t) to the system is the voltage applied to the pump that
feeds the water into Tank 1 (in volts). The measured output y(t) is the height
of the water in the lower tank (in meters).

Based on Bernoulli’s law—which states that water flowing through a small
hole at the bottom of a tank depends nonlinearly on the level of the water
in the tank—you expect the relationship between the input and the output
data to be nonlinear.

The sample data is provided in twotankdata.mat, which you install with the
latest version of System Identification Toolbox. This MAT-file contains SISO
time-domain data of 3000 samples with a sampling interval of 0.2 sec.
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Estimating Hammerstein-Wiener Models with Default
Settings
Prepare the sample data using the instruction in “Before You Begin” on
page 6-16 in the example on estimating nonlinear ARX models, which uses
the same data.

Perform the steps in the following procedure to estimate a
Hammerstein-Wiener model for this sample data.

1 In the System Identification Tool window, select Estimate > Nonlinear
models to open the Nonlinear Models dialog box.

2 In the Model Type tab, select Hammerstein-Wiener in the Model
Structure list.
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3 Keep the defaults in the I/O Nonlinearity tab

By default, the nonlinearity estimator is Piecewise Linear with 10 units
for both the Input Channels and the Output Channels.

6-47



6 Estimating Nonlinear Black-Box Models

4 Keep the defaults in the Linear Block tab.

By default, the model orders and delays of the linear Output-Error (OE)
model are nb=2, nf=3, and nk=1.
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5 Click Estimate.

This action adds the model nlhw1 to the Model Board in the System
Identification Tool window, as shown in the following figure.
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6 Estimating Nonlinear Black-Box Models

6 In the System Identification Tool window, select the Model output check
box.

Simulation of the model output uses the input validation data as input to
the model. It plots the simulated output on top of the output validation
data.

The Best Fits area of the Model Output plot shows that the agreement
between the model output and the validation-data output is 28.47%. Thus,
the default settings do not produce an accurate fit.

Plotting the Nonlinearities and Linear Transfer
Function
You can view the input-output nonlinearities and the linear transfer function
of the model on a Hammerstein-Wiener plot. For more information about
working with Nonlinear ARX Model plot, see “Hammerstein-Wiener Plots”
on page 9-53.
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1 In the System Identification Tool window, select the Hamm-Wiener check
box to view the Hammerstein-Wiener model plot.

The plot displays the input nonlinearity, as shown in the following figure.
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2 Click the yNL rectangle in the top portion of the Hammerstein-Wiener
Model Plot window.

The plot updates to display the output nonlinearity.
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3 Click the Linear Block rectangle in the top portion of the
Hammerstein-Wiener Model Plot window.

The plot updates to display the step response of the linear transfer function.
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4 In the Choose plot type list, select Bode. This action displays a Bode plot
of the linear transfer function, as shown in the following figure.

Changing the Model Structure
After estimating the Hammerstein-Wiener model with default settings, as
described in “Estimating Hammerstein-Wiener Models with Default Settings”
on page 6-46, you can try to improve the fit by modifying the model order and
the nonlinearity properties. Typically, you modify model structure by trial and
error until you get a model that produces an accurate fit to the data.

1 In the Nonlinear Models dialog box, select the Model Type tab, and then
select the Linear Block tab.

2 For the Voltage input channel, double-click the corresponding Input
Delay (nk) cell, type 3, and press Enter.
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3 Click Estimate.

This action adds the model nlhw2 to the Model Board in the System
Identification Tool window and the Model Output plot is updated to include
this model, as shown in the following figure.

The Best Fits area of the Model Output plot shows that nlhw2 fit is 62.95%.

4 In the Nonlinear Models dialog box, select the I/O Nonlinearity tab.

5 For the Voltage input channel, double-click the corresponding No. of
Units cell, type 20, and press Enter.

This action changes the number of units for the Piecewise Linear
nonlinearity estimator corresponding to the input channel.
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6 Click Estimate.

This action adds the model nlhw3 to the Model Board in the System
Identification Tool window. It also updates the Model Output plot, as
shown in the following figure.

The Best Fits area of the Model Output plot shows that the nlhw3 fit is
70.04%.

Changing the Nonlinearity Estimator
In this portion of the example, you improve the fit by changing the
nonlinearity estimator.

Note Piecewise Linear and Sigmoid Network are nonlinearity estimators
for general nonlinearity approximation. If you know that you system includes
saturation or dead-zone nonlinearities, specify these specialized nonlinearity
estimators in your model.
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1 In the Nonlinear Models dialog box, select the Model Type tab, and then
select the Linear Block tab.

2 For the Voltage input channel, double-click the corresponding Input
Delay (nk) cell, type 1, and press Enter. This action restores the input
delay to the default value.

3 In the Nonlinear Models dialog box, select the Model Type tab, and then
select the I/O Nonlinearity tab.

4 For the Voltage input, click the Nonlinearity cell, and select Sigmoid
Network from the list, as shown in the following figure.

This action updates the corresponding No. of Units cell to 10 sigmoid
units, as shown in the following figure.
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5 Click Estimate.

This action adds the model nlhw4 to the Model Board in the System
Identification Tool window. It also updates the Model Output plot, as
shown in the following figure.

The Best Fits area of the Model Output plot shows that the nlhw4 fit is
72.01%.

Selecting the Best Model
The best model is the simplest model that accurately describes the dynamics.

In this example, the best model fit was produced in “Changing the
Nonlinearity Estimator” on page 6-56, as shown in the following figure.
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Supported Nonlinearity Estimators
When configuring the nonlinear ARX and Hammerstein-Wiener models for
estimation, you must specify a mathematical structure for the nonlinear
portion of the model.

If you are working in the System Identification Tool GUI, specify the
nonlinearity type by name when you configure the nonlinear model structure.
If you are estimating or constructing a nonlinear model in the MATLAB
Command Window, you specify the nonlinearity as an argument in the nlarx
or nlhw estimation function.

• “Types of Nonlinearity Estimators” on page 6-60

• “Creating Custom Nonlinearities” on page 6-61

Types of Nonlinearity Estimators
System Identification Toolbox supports several nonlinearity estimators.

The following table summarizes supported nonlinearities for each type of
nonlinear model. For a description of each nonlinearity, see the references
pages for the corresponding nonlinearity object.

Nonlinearity Object Name Supported Model Type Supports Multiple
Inputs?

Custom Network
(User-Defined)

customnet Hammerstein-Wiener and
Nonlinear ARX

Yes

Dead Zone deadzone Hammerstein-Wiener No

Neural Network neuralnet Nonlinear ARX Yes

Piecewise Linear pwlinear Hammerstein-Wiener No

Saturation saturation Hammerstein-Wiener No

Sigmoid Network sigmoidnet Hammerstein-Wiener and
Nonlinear ARX

Yes

Tree Partition treepartition Nonlinear ARX Yes

Wavelet Network wavenet Hammerstein-Wiener and
Nonlinear ARX

Yes
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The Neural Network nonlinearity lets you import a network object you
created in Neural Network Toolbox.

The nonlinearity estimators deadzone, pwlinear, and saturation are
optimized for estimating Hammerstein-Wiener models.

Creating Custom Nonlinearities
System Identification Toolbox lets you use a custom nonlinearity to estimate
nonlinear ARX and Hammerstein-Wiener models.

A custom nonlinearity uses a unit functions that you define. This custom unit
function uses a weighted sum of inputs to compute a scalar output.

You can use a combination of these unit functions to approximate the
nonlinearity.

Note Hammerstein-Wiener models require that your custom nonlinearity
have one input and one output.

function [f, g, a] = gaussunit(x)
%GAUSSUNIT example of customnet unit function
%
%[f, g, a] = GAUSSUNIT(x)
%
% x: unit function variable
% f: unit function value
% g: df/dx
% a: unit active range (g(x) is significantly
% nonzero in the interval [-a a])
%
% The unit function must be vectorized:
% for a vector or matrix x, the output
% arguments f and g must have the same size as x
% f and g are computed element by element.

f = exp(-x.*x);
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if nargout>1
g = - 2*x .* f;
a = 0.2;

end
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7 Estimating Grey-Box Models

Overview of Grey-Box Modeling
Grey-box modeling is useful when you know the relationships between
variables, constraints on model behavior, or explicit equations representing
system dynamics. A grey-box model is a flexible model structure that lets you
specify the mathematical structure of the model explicitly, including couplings
between parameters and known parameter values.

If you understand the physics of your system and can represent the system
using ordinary differential or difference equations (ODE) with unknown
parameters, then you can use System Identification Toolbox to perform linear
or nonlinear grey-box modeling.

System Identification Toolbox supports both continuous-time and
discrete-time models. However, because most laws of physics are expressed
in continuous time, it is easier to construct models with physical insight in
continuous time, rather than in discrete time.

In addition to dynamic input-output models, you can also create time-series
models that have no inputs and static models that have no states.

This section discusses the following topics:

• “Supported Data” on page 7-2

• “Before You Begin” on page 7-3

• “Specifying the Grey-Box Structure” on page 7-3

• “Using Grey-Box Models” on page 7-4

If it is too difficult to describe your system using known physical laws, you
can use System Identification Toolbox to perform black-box modeling. For
more information about black-box modeling, see Chapter 5, “Estimating
Linear Nonparametric and Parametric Models” and Chapter 6, “Estimating
Nonlinear Black-Box Models”.

Supported Data
You can estimate both continuous-time or discrete-time grey-box models for
data with the following characteristics:
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• Time-domain or frequency-domain data.

Note Nonlinear grey-box models support only time-domain data.

• Single-output or multiple-output data.

For more information on representing your data for system identification, see
Chapter 3, “Representing Data for System Identification”.

Before You Begin
Before you begin estimating models, import the data into MATLAB, and
represent the data using System Identification Toolbox format. If you are
using the System Identification Tool, then import the data into the GUI to
make the data available to System Identification Toolbox. However, if you
prefer to work in the MATLAB Command Window, then represent your data
as an iddata or idfrd object. For more information about representing your
data for system identification, see Chapter 3, “Representing Data for System
Identification”.

After representing data in System Identification Toolbox format, plot the data
on a time plot or an estimated frequency response plot to examine the data
features. You can also use the advice command to analyze the data for the
presence of constant offsets and trends, delay, feedback, and nonlinearity, and
determine the order persistence of excitation.

You can preprocess your data by removing offsets and linear trends,
interpolating missing values, filtering to emphasize a specific frequency
range, or resampling using a different time interval.

For more information about types of available date plots and
data-preprocessing operations, see Chapter 4, “Plotting and Preprocessing
Data”.

Specifying the Grey-Box Structure
The first step in grey-box modeling is to define the model structure in an
m-file or MEX-file.
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For linear models. Write an m-file that returns state-space matrices as a
function of user-defined parameters and information about the model. For
examples, see “Linear Grey-Box Models” on page 7-5.

Next, create an idgrey object based on this m-file. For more information, see
“Specifying the Linear Grey-Box Model Structure” on page 7-5.

For nonlinear models. Write an m-file or MEX-file to return the first-order
derivatives of the states and output values as a function of the states, inputs,
time, parameters, and auxiliary variables. For information about the file
structure, see “Nonlinear Grey-Box Models” on page 7-13

Next, create an idnlgrey object based on this m-file or MEX-file.

Using Grey-Box Models
After estimating both linear and nonlinear grey-box models, you can use the
sim command to simulate the model, or the predict command to predict the
model output. For more information about using models, see Chapter 10,
“Postprocessing and Using Estimated Models”.

System Identification Toolbox represents linear grey-box models as idgrey
model objects. You can convert these models to state-space form using
the idss command and analyze the model behavior using transient- and
frequency-response plots and other linear analysis plots, as described in
Chapter 9, “Plotting and Validating Models”.

System Identification Toolbox represents nonlinear grey-box models as
idnlgrey model objects. These model objects store the parameter values
resulting from the estimation. You can access these parameters from
the model objects to use these variables in computation in the MATLAB
workspace.

Note Linearization of nonlinear grey-box models is not supported.

7-4



Linear Grey-Box Models

Linear Grey-Box Models
You can estimate linear discrete-time and continuous-time grey-box models
for arbitrary ordinary differential or difference equations using single-output
and multiple-output time-domain data, or time-series data that has no
measured inputs.

This section describes the following topics:

• “Specifying the Linear Grey-Box Model Structure” on page 7-5

• “Example – Representing a Grey-Box Model in an M-File” on page 7-6

• “Example – Continuous-Time Grey-Box Model for Heat Diffusion” on page
7-8

• “Example – Discrete-Time Grey-Box Model for Parameterized Disturbance
Models” on page 7-11

Specifying the Linear Grey-Box Model Structure
You must represent your system equations in state-space form. State-space
models use state variables x(t) to describe a system as a set of first-order
differential equations, rather than by one or more nth-order differential
equations.

In continuous-time, the state-space description has the following form:

& %x t Fx t Gu t Kw t
y t Hx t Du t w t
x x

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

= + +
= + +
=0 0

The discrete-time state-space model structure is often written in the
innovations form:

x kT T Ax kT Bu kT Ke kT
y kT Cx kT Du kT e kT
x

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

+ = + +
= + +

=0 xx0

Use the following format to implement the linear grey-box model in an m-file:
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[A,B,C,D,K,x0] = myfunc(par,T,CDmfile,aux)

where the matrices A, B, C, D, K, and x0 represent both continuous-time and
discrete-time descriptions, myfunc is the name of the m-file, par contains the
parameters as a column vector, and T is the sampling interval. aux contains
auxiliary variables in your system. You use auxiliary variables to vary system
parameters at the input to the function, and avoid editing the m-file.

CDmfile is an optional argument that describes whether the resulting
state-space matrices are in discrete time or continuous time. By default,
CDmfile='cd', which means that the sampling interval property of the model
Ts determines whether the model is continuous or discrete in time.

For more information about these arguments, see the idgrey reference pages.

For more information about validating your models, see Chapter 9, “Plotting
and Validating Models”. To learn more about simulation and prediction
output using your models, see Chapter 10, “Postprocessing and Using
Estimated Models”.

Example – Representing a Grey-Box Model in an
M-File
In this example, you represent the structure of the following continuous-time
model:

&x x t u t

y t x t e t

x

=
⎡

⎣
⎢

⎤

⎦
⎥ +

⎡

⎣
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⎤

⎦
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥ +

0 1
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0

1 0
0 1

1 2θ θ
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(00
0
3) =

⎡

⎣
⎢

⎤

⎦
⎥

θ

This equation represents an electrical motor, where y t x t1 1( ) ( )= is the

angular position of the motor shaft, and y t x t2 2( ) ( )= is the angular velocity.
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The parameter −θ1 is the inverse time constant of the motor, and −θ θ
2

1
is the

static gain from the input to the angular velocity.

The motor is at rest at t=0, but its angular position θ3 is unknown. Suppose

that the approximate nominal values of the unknown parameters are θ1 1= −

and θ2 0 25= . . The variance of the errors in the position measurement is
0.01, and the variance in the angular velocity measurements is 0.1. For
more information about this example, see the section on state-space models
in System Identification: Theory for the User, Second Edition, by Lennart
Ljung, Prentice Hall, 1999.

The continuous-time state-space model structure is defined by the following
equation:

& %x t Fx t Gu t Kw t
y t Hx t Du t w t
x x

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

= + +
= + +
=0 0

To prepare this model for identification in System Identification Toolbox,
perform the following procedure:

1 Create the following m-file to represent the model structure in this example:

function [A,B,C,D,K,x0] = myfunc(par,T,aux)
A = [0 1; 0 par(1)];
B = [0;par(2)];
C = eye(2);
D = zeros(2,2);
K = zeros(2,1);
x0 =[par(3);0];
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2 Use the following syntax to define an idgrey model object based on the
myfunc m-file:

m = idgrey('myfunc',par,'c',T,aux)

where par represents user-defined parameters and contains their nominal
(initial) values. 'c' specifies that the underlying parameterization is in
continuous time. aux contains the values of the auxiliary parameters.

Note You must specify T and aux even if they are not used by the myfunc
code.

Use pem to estimate the grey-box parameter values:

m = pem(data,m)

where data is the estimation data and m is the idgrey object with unknown
parameters.

Note Compare this example to “Example – Estimating Structured
Continuous-Time State-Space Models” on page 5-89, where the same problem
is solved using a structured state-space representation.

Example – Continuous-Time Grey-Box Model for
Heat Diffusion
In this example, you estimate the heat conductivity and the heat-transfer
coefficient of a continuous-time grey-box model for a heated-rod system.

This system consists of a well-insulated metal rod of length L and a
heat-diffusion coefficient κ . The input to the system is the heating power u(t)
and the measured output y(t) is the temperature at the other end.
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Under ideal conditions, this system is described by the heat-diffusion
equation—which is a partial differential equation in space and time.

∂
∂

= ∂
∂

x t
t

x t( , ) ( , )ξ κ ξ
ξ

2

2

To get a continuous-time state-space model, you can represent the
second-derivative using the following difference approximation:

∂
∂

=
+( ) − + −( )

( )
= ⋅

2

2 2

2x t x t L x t x t L

L

k L

( , ) , ( , ) ,ξ
ξ

ξ ξ ξ

ξ

Δ Δ

Δ
Δwhere 

This transformation produces a state-space model of order n L
L= Δ , where

the state variables x t k L( , )⋅ Δ are lumped representations for x t( , )ξ for the
following range of values:

k L k⋅ ≤ < +( )Δ ξ 1

The dimension of x depends on the spatial grid size ΔL in the approximation.

The heat-diffusion equation is mapped to the following continuous-time
state-space model structure to identify the state-space matrices:

& %x t Fx t Gu t Kw t
y t Hx t Du t w t
x x

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

= + +
= + +
=0 0
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The following m-file describes the state-space equation for this model. In
this case, the auxiliary variables specify grid-size variables, so that you can
modify the grid size without the m-file.

function [A,B,C,D,K,x0] = heatd(pars,T,aux)
% Number of points in the space-discretization
Ngrid = aux(1);
% Length of the rod
L = aux(2);
% Initial rod temperature (uniform)
temp = aux(3);
% Space interval
deltaL = L/Ngrid;
% Heat-diffusion coefficient
kappa = pars(1);
% Heat transfer coefficient at far end of rod
htf = pars(2);
A = zeros(Ngrid,Ngrid);
for kk = 2:Ngrid-1

A(kk,kk-1) = 1;
A(kk,kk) = -2;
A(kk,kk+1) = 1;

end
% Boundary condition on insulated end
A(1,1) = -1; A(1,2) = 1;
A(Ngrid,Ngrid-1) = 1;
A(Ngrid,Ngrid) = -1;
A = A*kappa/deltaL/deltaL;
B = zeros(Ngrid,1);
B(Ngrid,1) = htf/deltaL;
C = zeros(1,Ngrid);
C(1,1) = 1;
D = 0;
K = zeros(Ngrid,1);
x0 = temp*ones(Ngrid,1);
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Use the following syntax to define an idgrey model object based on the
myfunc m-file:

m = idgrey('heatd',[0.27 1],'c',[10,1,22])

This command specifies the auxiliary parameters as inputs to the function,
include the model order 10, the rod length of 1 meter, and an initial
temperature of 22 degrees Celsius. The command also specifies the initial
values for heat conductivity as 0.27, and for the heat transfer coefficient as 1.

For given data, you can use pem to estimate the grey-box parameter values:

me = pem(data,m)

The following command shows how you can specify to estimate a new model
with different auxiliary variables directly in the estimator command:

me = pem(data,m,'FileArgument',[20,1,22])

This syntax uses the FileArgument model property to specify a finer grid
using a larger value for Ngrid. For more information about linear grey-box
model properties, see the idgrey reference pages.

Example – Discrete-Time Grey-Box Model for
Parameterized Disturbance Models
This example shows how to create a grey-box model structure when you know
the variance of the measurement noise. The code in this example uses the
Control System Toolbox function dlqr for computing the Kalman gain from
the known and estimated noise variance.
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Consider the following discrete-time state-space equation:
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where w and e are independent white noises with covariance matrices R1
and R2, respectively. par1, par2, par3, and par4 represent the unknown
parameter values to be estimated.

Suppose that you know the variance of the measurement noise R2, and that
only the first component ofw(t) is nonzero. The following m-file shows how to
capture this information in an m-file:

function [A,B,C,D,K,x0] = mynoise(par,T,aux)
R2 = aux(1); % Known measurement noise variance
A = [par(1) par(2);1 0];
B = [1;0];
C = [par(3) par(4)];
D = 0;
R1 = [par(5) 0;0 0];
K = A*dlqr(A,eye(2),C,R1,R2); % Uses Control System Toolbox
x0 = [0;0];

The Kalman gain is computed using the dlqr function in Control System
Toolbox.
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Nonlinear Grey-Box Models
You can estimate nonlinear discrete-time and continuous-time grey-box
models for arbitrary nonlinear ordinary differential equations using
single-output and multiple-output time-domain data, or time-series data that
has no inputs. Your grey-box models can be static or dynamic.

Grey-box models describe the system behavior as a set of nonlinear differential
or difference equations with unknown parameters.

This section describes the following topics:

• “Nonlinear Grey-Box Demos and Examples” on page 7-13

• “Specifying the Nonlinear Grey-Box Model Structure” on page 7-13

• “Constructing the idnlgrey Object” on page 7-15

• “Using pem to Estimate Nonlinear Grey-Box Models” on page 7-16

• “Specifying the Estimation Algorithm” on page 7-16

Nonlinear Grey-Box Demos and Examples
System Identification Toolbox provides several demos and case studies on
creating, manipulating and estimating nonlinear grey-box models. You can
access these demos by typing the following command at the MATLAB prompt:

iddemo

For examples of m-files and MEX-files that specify model structure, see the
toolbox/ident/iddemos/examples directory. For example, the model of a
DC motor—used in the demo idnlgreydemo1—is described in files dcmotor_m
and dcmotor_c.

Specifying the Nonlinear Grey-Box Model Structure
You must represent your system as a set of first order nonlinear difference or
differential equations:
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where x t
d
dt

x t†( ) ( )= for continuous-time representation and x t x t Ts
†( ) ( )= +

for discrete-time representation with Ts as the sampling interval. F and
H are arbitrary linear or nonlinear functions with Nx and Ny components,
respectively. Nx is the number of states and Ny is the number of outputs.

After you establish the equations for your system, create an m-file or MEX-file.
MEX-files, which can be created in C or Fortran, are dynamically-linked
subroutines that can be loaded and executed by the MATLAB interpreter. For
more information about MEX-files, see the MATLAB documentation.

The purpose of the model file is to return the state derivatives and model
outputs as a function of time, states, inputs, and model parameters, as follows:

[dx,y] = MODFILENAME(t,x,u,p1,p2, ...,pN,FileArgument)

Tip The template file for writing the C MEX-file,
IDNLGREY_MODEL_TEMPLATE.c, is located in matlab/toolbox/ident/nlident.

The output variables are:

• dx — Represents the right side(s) of the state-space equation(s). A column
vector with Nx entries. For static models, dx=[].

For discrete-time models. dx is the value of the states at the next time
step x(t+Ts).

For continuous-time models. dx is the state derivatives at time t, or dx
dt .

• y — Represents the right side(s) of the output equation(s). A column vector
with Ny entries.

The file inputs are:
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• t — Current time.

• x — State vector at time t. For static models, equals [].

• u — Input vector at time t. For time-series models, equals [].

• p1,p2, ...,pN — Parameters, which can be real scalars, column vectors or
two-dimensional matrices. N is the number of parameter object. For scalar
parameters, N is the total number of parameter elements.

• FileArgument — Contains auxiliary variables that might be required for
updating the constants in the state equations.

Tip After creating a model file, call it directly from MATLAB with reasonable
inputs and verify the output values.

For an example of creating grey-box model files, see the demo Creating
idnlgrey Model Files.

Constructing the idnlgrey Object
After you create the m-file or MEX-file with you model structure, you must
define an idnlgrey object. This object shares many of the properties of the
linear idgrey model object.

Use the following syntax to define the idnlgrey model object:

m = idnlgrey('filename',Order,Parameters,InitialStates)

The idnlgrey arguments are defined as follows:

• 'filename' — Name of the m-file or MEX-file storing the model structure.
This file must be on the MATLAB path.

• Order — Vector with three entries [Ny Nu Nx], specifying the number of
model outputs Ny, the number of inputs Nu, and the number of states Nx.

• Parameters — Parameters, specified as struct arrays, cell arrays, or
double arrays.

• InitialStates — Specified in a same way as parameters. Must be fourth
input to the idnlgrey constructor.

7-15



7 Estimating Grey-Box Models

For detailed information about this object and its properties, see the idnlgrey
reference pages. For general information about working with model objects,
see “Working with Model Objects” on page 1-19.

Using pem to Estimate Nonlinear Grey-Box Models
You can use the pem command to estimate the unknown idnlgrey model
parameters and initial states using measured data.

The input-output dimensions of the data must be compatible with the input
and output orders you specified for the idnlgrey model.

Use the following general estimation syntax:

m = pem(data,m)

where data is the estimation data and m is the idnlgrey model object you
constructed.

You can pass additional property-value pairs to pem to specify the properties
of the model or the estimation algorithm. Assignable properties include the
ones returned by the get(idnlgrey) command and the algorithm properties
returned by the get(idnlgrey, 'Algorithm'), such as `MaxIter' and
`Tolerance'. For detailed information about these model properties, see
the idnlgrey reference pages.

For more information about validating your models, see Chapter 9, “Plotting
and Validating Models”. To learn more about simulation and prediction
output using your models, see Chapter 10, “Postprocessing and Using
Estimated Models”.

Specifying the Estimation Algorithm
The Algorithm property of the model specifies the estimation algorithm,
which simulates the model several times by trying various parameter values
to reduce the prediction error.

The following algorithm properties can affect the quality of the results:

• “Simulation Method” on page 7-17
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• “Search Method” on page 7-17

• “Gradient Options” on page 7-18

• “Example — Specifying Algorithm Properties” on page 7-18

For detailed information about these and other model properties, see the
idnlgrey reference pages.

Simulation Method
You can specify the simulation method using the SimulationOptions
(struct) fields of the model Algorithm property.

MATLAB provides several variable-step and fixed-step solvers for simulating
idnlgrey models. To view a list of available solvers and their properties, type
the following command at the MATLAB prompt:

idprops idnlgrey algorithm.simulationoptions

For discrete-time systems, the default solver is 'FixedStepDiscrete'. For
continuous-time systems, the default solver is `ode45'.

By default, SimulationOptions.Solver is set to `Auto', which automatically
selects either `ode45' or `FixedStepDiscrete' during estimation and
simulation—depending on whether the system is continuous or discrete in
time.

Search Method
You can specify the search method for generating maximum likelihood
estimates of model parameters using the SearchMethod field of the Algorithm
property. Two categories of methods are available for nonlinear grey-box
modeling.

One category of methods consists of the minimization schemes that are
based on line-search methods, including Gauss-Newton type methods,
steepest-descent methods, and Levenberg-Marquardt methods .

(Requires Optimization Toolbox) The Trust-Region Reflective Newton method
of nonlinear least squares (`lsqnonlin'), where the cost is the sum of squares
of errors between the measured and simulated outputs. When the parameter
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bounds are different from the default +/- Inf, this search method handles the
bounds better than the schemes based on line search, but the results might
not be optimal in the maximum-likelihood sense.

By default, SearchMethod is set to `Auto', automatically selects a method
from the available minimizers. If Optimization Toolbox is available,
SearchMethod is set to `lsqnonlin'. Otherwise, SearchMethod is a
combination of line-search based schemes.

Gradient Options
You can specify the method for calculating gradients using the
GradientOptions field of the Algorithm property. Gradients are the
derivatives of errors with respect to unknown parameters and initial states.

Gradients are calculated by numerically perturbing unknown quantities and
measuring their effects on the simulation error.

Option for gradient computation include the choice of the differencing scheme
(forward, backward or central), the size of minimum perturbation of the
unknown quantities, and whether the gradients are calculated simultaneously
or individually.

Example — Specifying Algorithm Properties
You can specify the Algorithm fields directly in the estimation syntax, as
property-value pairs.

For example, if you want to use SearchMethod = `gn', MaxIter = 5, and
Trace = `on', use the following syntax in the pem command:

m = pem(data,init_model,`Search',`gn',...
`MaxIter',5,...
`Trace',`On')
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Overview of Recursive Estimation
(p. 8-2)

Recursive estimation capabilities in
System Identification Toolbox and
its applications.

Recursive Estimation Commands
(p. 8-4)

Summary of commands and syntax
for recursive estimation.

Algorithms for Recursive Estimation
(p. 8-7)

Description of supported algorithms
for recursive estimation.

Data Segmentation (p. 8-14) Use of data segmentation to model
systems exhibiting abrupt changes.



8 Recursive Parameter Estimation

Overview of Recursive Estimation
Many real-world applications, such as adaptive control, adaptive filtering,
and adaptive prediction, require a model of the system to be available online
while the system is in operation. Estimating an online model for batches of
input-output data might be used to address the following types of questions
regarding system operation:

• Which input should be applied at the next sampling instant?

• How should the parameters of a matched filter be tuned?

• What are the predictions of the next few outputs?

• Has a failure occurred? If so, what type of failure?

You might also use online models to investigate time variations in system
and signal properties.

The methods for computing online models are called recursive identification
methods. Recursive algorithms are also called recursive parameter estimation,
adaptive parameter estimation, sequential estimation, and online algorithms.

You can use System Identification Toolbox commands to estimate linear
polynomial models, such as ARX, ARMAX, Box-Jenkins, and Output-Error
models. If you are working with time-series data that contains no inputs
and a single output, you can estimate AR (Auto-Regressive) and ARMA
(Auto-Regressive Moving Average) single-output models.

For examples of recursive estimation and data segmentation using System
Identification Toolbox, run the Recursive Estimation and Data Segmentation
demonstration by typing the following command at the MATLAB prompt:

iddemo5

This chapter discusses the following topics:

• “Recursive Estimation Commands” on page 8-4

• “Algorithms for Recursive Estimation” on page 8-7

• “Data Segmentation” on page 8-14
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For detailed information about recursive parameter estimation algorithms,
see the corresponding chapter in System Identification: Theory for the User by
Lennart Ljung (PTR Prentice Hall, Upper Saddle River, NJ, 1999).
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Recursive Estimation Commands
Before estimating models using recursive algorithms, you must import your
data into the MATLAB workspace and represent your data in one of the
following formats:

• Matrix of the form [y u]. y represents the output data using one or more
column vectors. Similarly, u represents the input data using one or more
column vectors.

• iddata or idfrd object.

For more information about creating these objects, see Chapter 3,
“Representing Data for System Identification”.

The general syntax for recursive estimation commands is as follows:

[params,y_hat]=command(data,nn,adm,adg)

params matrix contains the values of the estimated parameters, where the
kth row contains the parameters associated with time k, which are computed
using the data values in the rows up to and including the row k.

y_hat contains the predicted output values such that the kth row of y_hat is
computed based on the data values in the rows up to and including the row k.

Tip y_hat contains the adaptive predictions of the output and is useful for
adaptive filtering applications, such as noise cancellation.

nn specified the model orders and delay according to the specific polynomial
structure of the model. For example, nn=[na nb nk] for ARX models. For
more information about specifying polynomial model orders and delays, see
“Black-Box Polynomial Models” on page 5-42.

adm and adg specify any of the four recursive algorithm, as described in
“Algorithms for Recursive Estimation” on page 8-7.

The following table summarizes the recursive estimation commands
supported by System Identification Toolbox. The command description
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indicates whether you can estimate single-input, single-output, multiinput,
and multioutput, and time-series (no input) models. For details about each
command, see the corresponding reference pages.

Tip For ARX and AR models, use rarx. For single-input and single-output
ARMAX or ARMA, Box-Jenkins, and Output-Error models, use rarmax, rbj,
and roe, respectively.

Commands for Linear Recursive Estimation

Command Description

rarmax Estimate parameters of single-input and
single-output ARMAX and ARMA models.

rarx Estimate parameters of single- or
multiinput and single-output ARX and
AR models. Does not support multioutput
system.

rbj Estimate parameters of single-input and
single-output Box-Jenkins models.

roe Estimate parameters of single-input and
single-output Output-Error models.
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Commands for Linear Recursive Estimation (Continued)

Command Description

rpem Estimate parameters of multiinput
and single-output ARMAX/ARMA,
Box-Jenkins, or Output-Error models using
the general recursive prediction-error
algorithm for estimating the parameter
gradient.

Note Unlike pem, rpem does not support
state-space models.

rplr Use as an alternative to rpem to estimate
parameters of multiinput and single-output
systems when you want to use recursive
pseudolinear regression method.
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Algorithms for Recursive Estimation
This section describes the four recursive estimation algorithms supported
by System Identification Toolbox. For detailed information about recursive
parameter estimation algorithms, see the corresponding chapter in System
Identification: Theory for the User by Lennart Ljung (PTR Prentice Hall,
Upper Saddle River, NJ, 1999).

You specify the type of recursive estimation algorithms as arguments adm
and adg of the recursive estimation commands in “Recursive Estimation
Commands” on page 8-4.

This section discusses the following topics:

• “General Form of Recursive Estimation Algorithm” on page 8-7

• “Kalman Filter Algorithm” on page 8-8

• “Forgetting Factor Algorithm” on page 8-10

• “Unnormalized and Normalized Gradient Algorithms” on page 8-12

General Form of Recursive Estimation Algorithm
The general recursive identification algorithm is given by the following
equation:

ˆ ˆ ˆθ θt t K t y t y t( ) = −( ) + ( ) ( ) − ( )( )1

θ̂ t( ) is the parameter estimate at time t. y(t) is the observed output at time t

and ŷ t( ) is the prediction of y(t) based on observations up to time t-1. The

gain, K(t), determines how much the current prediction error y t y t( ) − ( )ˆ
affects the update of the parameter estimate. The estimation algorithms

minimize the prediction-error term y t y t( ) − ( )ˆ .

The gain has the following general form:

K t Q t t( ) = ( ) ( )ψ
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The recursive algorithms supported by System Identification Toolbox differ
based on different approaches for choosing the form of Q(t) and computing

ψ t( ) , where ψ t( ) represents the gradient of the predicted model output

ˆ |y t θ( ) with respect to the parameters θ .

The simplest way to visualize the role of the gradient ψ t( ) of the parameters,
is to consider models with a linear-regression form:

y t t t e tT( ) = ( ) ( ) + ( )ψ θ0

In this equation, ψ t( ) is the regression vector that is computed based on

previous values of measured inputs and outputs. θ0 t( ) represents the true
parameters. e(t) is the noise source (innovations), which is assumed to be

white noise. The specific form of ψ t( ) depends on the structure of the
polynomial model.

For linear regression equations, the predicted output is given by the following
equation:

ˆ ˆy t t tT( ) = ( ) −( )ψ θ 1

For models that do not have the linear regression form, it is not possible to

compute exactly the predicted output and the gradient ψ t( ) for the current

parameter estimate θ̂ t −( )1 . To learn how you can compute approximation for

ψ t( ) and θ̂ t −( )1 for general model structures, see the section on recursive
prediction-error methods in System Identification: Theory for the User by
Lennart Ljung (PTR Prentice Hall, Upper Saddle River, NJ, 1999).

Kalman Filter Algorithm
This section discusses the following topics:

• “Mathematics of the Kalman Filter Algorithm” on page 8-9
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• “Using the Kalman Filter Algorithm” on page 8-10

Mathematics of the Kalman Filter Algorithm
The following set of equations summarize the Kalman filter adaptation
algorithm.

ˆ ˆ ˆθ θt t K t y t y t( ) = −( ) + ( ) ( ) − ( )( )1

ˆ ˆy t t tT( ) = ( ) −( )ψ θ 1

K t Q t t( ) = ( ) ( )ψ

Q t
P t

R t P t tT( ) = −( )
+ ( ) −( ) ( )

1

12 ψ ψ

P t P t R
P t t t P t

R t P t t

T

T( ) = −( ) + −
−( ) ( ) ( ) −( )
+ ( ) −( ) ( )

1
1 1

1
1

2

ψ ψ

ψ ψ

This formulation assumes the linear-regression form of the model:

y t t t e tT( ) = ( ) ( ) + ( )ψ θ0

The Kalman filter is used to obtain Q(t).

This formulation also assumes that the true parameters θ0 t( ) are described
by a random walk:

θ θ0 0 1t t w t( ) = −( ) + ( )

w(t) is Gaussian white noise with the following covariance matrix, or drift
matrix R1:

Ew t w t RT( ) ( ) = 1
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R2 is the variance of the innovations e(t) in the following equation:

y t t t e tT( ) = ( ) ( ) + ( )ψ θ0

The Kalman filter algorithm is entirely specified by the sequence of data y(t),

the gradient ψ t( ) , R1, R2, and the initial conditions θ t =( )0 (initial guess of

the parameters) and P t =( )0 (covariance matrix that indicates parameters
errors).

Note To simplify the inputs, you can scale R1, R2, and P t =( )0 of the original
problem by the same value such that R2 is equal to 1. This scaling does not
affect the parameters estimates.

Using the Kalman Filter Algorithm
The general syntax for the command described in “Algorithms for Recursive
Estimation” on page 8-7 is the following:

[params,y_hat]=command(data,nn,adm,adg)

To specify the Kalman filter algorithm, set adm to 'kf' and adg to the value
of the drift matrix R1 (described in “Mathematics of the Kalman Filter
Algorithm” on page 8-9).

Forgetting Factor Algorithm
This section discusses the following topics:

• “Mathematics of the Forgetting Factor Algorithm” on page 8-10

• “Using the Forgetting Factor Algorithm” on page 8-12

Mathematics of the Forgetting Factor Algorithm
The following set of equations summarize the forgetting factor adaptation
algorithm.
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ˆ ˆ ˆθ θt t K t y t y t( ) = −( ) + ( ) ( ) − ( )( )1

ˆ ˆy t t tT( ) = ( ) −( )ψ θ 1

K t Q t t( ) = ( ) ( )ψ

Q t P t
P t

t P t tT( ) = ( ) = −( )
+ ( ) −( ) ( )

1

1λ ψ ψ

P t P t
P t t t P t

t P t t

T

T( ) = −( ) − −( ) ( ) ( ) −( )
+ ( ) −( ) ( )

⎛

⎝
⎜
⎜

⎞

⎠

1 1
1 1

1λ
ψ ψ

λ ψ ψ
⎟⎟
⎟

To obtain Q(t), the following functions is minimized at time t:

λt k
k
t

e k−
=∑ ( )2
1

This approach discounts old measurements exponentially such that an

observation that is τ samples old carries a weight that is equal to λτ times

the weight of the most recent observation. τ λ= −
1

1 represents the memory

horizon of this algorithm. Measurements older than τ λ= −
1

1 typically carry a
weight that is less than about 0.3.

λ is called the forgetting factor and typically has a positive value between
0.97 and 0.995.

Note In the linear regression case, the forgetting factor algorithm is known
as the recursive least squares (RLS) algorithm. The forgetting factor algorithm
for λ = 1 is equivalent to the Kalman filter algorithm with R1=0 and R2=1.
For more information about the Kalman filter algorithm, see “Kalman Filter
Algorithm” on page 8-8.
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Using the Forgetting Factor Algorithm
The general syntax for the command described in “Algorithms for Recursive
Estimation” on page 8-7 is the following:

[params,y_hat]=command(data,nn,adm,adg)

To specify the forgetting factor algorithm, set adm to 'ff' and adg to the
value of the forgetting factor λ (described in “Mathematics of the Forgetting
Factor Algorithm” on page 8-10).

Tip λ typically has a positive value between 0.97 and 0.995.

Unnormalized and Normalized Gradient Algorithms
In the linear regression case, the gradient methods are also known as the
least mean squares (LMS) methods.

This section discusses the following topics:

• “Mathematics of the Unnormalized and Normalized Gradient Algorithm”
on page 8-12

• “Using the Unnormalized and Normalized Gradient Algorithms” on page
8-13

Mathematics of the Unnormalized and Normalized Gradient
Algorithm
The following set of equations summarize the unnormalized gradient and
normalized gradient adaptation algorithm.

ˆ ˆ ˆθ θt t K t y t y t( ) = −( ) + ( ) ( ) − ( )( )1

ˆ ˆy t t tT( ) = ( ) −( )ψ θ 1

K t Q t t( ) = ( ) ( )ψ
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In the unnormalized gradient approach, Q(t) is the product of the gain γ
and the identity matrix:

Q t I( ) = γ

In the normalized gradient approach, Q(t) is the product of the gain γ , and

the identity matrix is normalized by the magnitude of the gradient ψ t( ) :

Q t
t

I( ) =
( )
γ

ψ 2

These choices of Q(t) update the parameters in the negative gradient direction,
where the gradient is computed with respect to the parameters.

Using the Unnormalized and Normalized Gradient Algorithms
The general syntax for the command described in “Algorithms for Recursive
Estimation” on page 8-7 is the following:

[params,y_hat]=command(data,nn,adm,adg)

To specify the unnormalized gain algorithm, set adm to 'ug' and adg to the
value of the gain γ (described in “Mathematics of the Unnormalized and
Normalized Gradient Algorithm” on page 8-12).

To specify the normalized gain algorithm, set adm to 'ng' and adg to the
value of the gain γ .
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Data Segmentation
For systems that exhibit abrupt changes while the data is being collected,
you might want to develop models for separate data segments such that the
system does not change during a particular data segment. Such modeling
requires identification of the time instants when the changes occur in the
system, breaking up the data into segments according to these time instants,
and identification of models for the different data segments.

The following cases are typical applications for data segmentation:

• Segmentation of speech signals, where each data segment corresponds
to a phonem.

• Detection of trend breaks in time series.

• Failure detection, where the data segments correspond to operation with
and without failure.

• Estimating different working modes of a system.

Use segment to build polynomial models, such as ARX, ARMAX, AR, and
ARMA, such that the model parameters are piecewise constant over time. For
detailed information about this function, see the corresponding reference
pages.

To see an example of using data segmentation, run the Recursive Estimation
and Data Segmentation demonstration by typing to the following command at
the MATLAB prompt:

iddemo5
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Plotting and Validating
Models

Overview of Model Plots and
Validation (p. 9-3)

Introduction to validating models
and supported model plots.

Model Output Plots (p. 9-7) Plotting simulated or predicted
model output and comparing model
output to measured output for all
linear parametric and nonlinear
models.

Residual Analysis Plots (p. 9-15) Plotting residuals and performing
residual analysis tests for all linear
parametric and nonlinear models.

Impulse and Step Response Plots
(p. 9-21)

Plotting transient response plots for
models, including impulse response
and step response, for all linear
parametric models and correlation
analysis models.

Frequency Response Plots (p. 9-29) Plotting Bode and Nyquist plots for
models.

Noise Spectrum Plots (p. 9-36) Plotting the frequency-response
of the estimated noise model for a
linear system.

Pole-Zero Plots (p. 9-43) Plotting pole-zero plots for linear
parametric models and using
pole-zero plots to gain insight into
model-order reduction.
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Nonlinear ARX Plots (p. 9-48) Plotting nonlinearity characteristics
of a nonlinear ARX model.

Hammerstein-Wiener Plots (p. 9-53) Plotting characteristics of
linear and nonlinear blocks in
a Hammerstein-Wiener model.

Using Akaike’s Final Prediction
Error and Information Criterion
(p. 9-58)

Validating models using Akaike’s
Final Prediction Error (FPE) and
Akaike’s Information Criterion
(AIC).

Viewing Model Uncertainty (p. 9-61) Extracting information about model
parameter uncertainty from linear
models.

Troubleshooting Models (p. 9-64) Adjusting your modeling strategy
based on model-validation plots.
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Overview of Model Plots and Validation
After estimating each model, you can validate the model to determine whether
the model can reproduce system behavior by simulation or prediction within
acceptable bounds. You iterate between estimation and validation until you
find the simplest model that adequately captures the system dynamics.

For plots that compare model response to measured response, such as model
output and residual analysis plots, you designate two types of data sets: one
for estimating the models (estimation data), and the other for validating the
models (validation data). When you validate a model using a fresh data
set, this process is called cross-validation. Although you can designate the
same data set to be used for estimating and validating the model, you risk
overfitting your data.

Note Validation data should be the same in frequency content as the
estimation data. If you detrended the estimation data, you must remove the
same trend from the validation data. For more information about detrending,
see “Detrending Data” on page 4-20.

This section discusses the following topics:

• “Supported Model Plots” on page 9-4

• “Validating Models” on page 9-5

• “Getting Advice About Models” on page 9-6

For ideas on how to adjust your modeling strategy based on validation results,
see “Troubleshooting Models” on page 9-64.

Tip If you have installed Control System Toolbox, you can also view models
using the LTI Viewer. For more information, see “Viewing Model Response in
the LTI Viewer” on page 10-23.
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Supported Model Plots
The following table summarizes the types of supported model plots in
System Identification Toolbox. To learn more about each type of plot, see the
corresponding section.

Plot Types Supported Models Learn More

Model Output All linear and nonlinear
models

“Model Output Plots”
on page 9-7

Residual Analysis All linear and nonlinear
models

“Residual Analysis
Plots” on page 9-15

Transient Response • All linear parametric
models

• Correlation analysis
(nonparametric)
models

• For nonlinear
models, only step
response.

“Impulse and Step
Response Plots” on
page 9-21

Frequency Response • All linear parametric
models

• Spectral analysis
(nonparametric)
models

“Frequency Response
Plots” on page 9-29

Noise Spectrum • All linear parametric
models

• Spectral analysis
(nonparametric)
models

“Noise Spectrum Plots”
on page 9-36

Poles and Zeros All linear parametric
models

“Pole-Zero Plots” on
page 9-43
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Plot Types Supported Models Learn More

Nonlinear ARX Nonlinear ARX models
only

“Nonlinear ARX Plots”
on page 9-48

Hammerstein-Wiener Hammerstein-Wiener
models only

“Hammerstein-Wiener
Plots” on page 9-53

You can create most plots in both the System Identification Tool GUI and the
MATLAB Command Window. For general information about working with
plots in System Identification Toolbox, see “Working with Plots” on page 2-29.

The plots you create using the System Identification Tool provide additional
options that are specific to System Identification Toolbox, such as selecting
input-output channels and displaying confidence intervals.

The plots you create in the MATLAB Command Window display in the
MATLAB figure window and provide MATLAB options for formatting, saving,
printing, and exporting to a variety of file formats.

Note You can only display confidence intervals for linear models.

Validating Models
The most common approach to validating models is to create Model Output
and Residual Analysis plots. The Model Output plot helps you compare
simulated or predicted model output to measured output. For more
information, see “Model Output Plots” on page 9-7. The Residual Analysis
plot displays the results of residual tests. For more information, see “Residual
Analysis Plots” on page 9-15. Model Output and Residual analysis plots are
available for all model types.

Displaying confidence intervals for linear and nonlinear grey-box models on
these and other plots lets you assess the uncertainty of model parameters.
For more information, see “Viewing Model Uncertainty” on page 9-61.

In addition to these validation approaches, System Identification Toolbox
provides the following way for validating your models:
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• Analyzing model response plots to gain insight into how well parametric
models captures system dynamics. For more information, see “Impulse
and Step Response Plots” on page 9-21 and “Frequency Response Plots”
on page 9-29. For information about the response of the noise model, see
“Noise Spectrum Plots” on page 9-36.

• Plot the poles and zeros of the linear parametric model. For more
information, see “Pole-Zero Plots” on page 9-43.

• Plot linear and nonlinear blocks of Hammerstein-Wiener and nonlinear
ARX models. For more information, see “Hammerstein-Wiener Plots” on
page 9-53 and “Nonlinear ARX Plots” on page 9-48.

• Comparing the response of nonparametric models, such as impulse-, step-,
and frequency-response models, to parametric models, such as linear
polynomial models, state-space model, and nonlinear parametric models.

Note Do not use this comparison when feedback is present in the system
because feedback makes nonparametric models unreliable. To test if
feedback is present in the system, use the advice command on the data.

• Compare models using Akaike Information Criterion or Akaike Final
Prediction Error. For more information, see aic and fpe reference pages.

Getting Advice About Models
Use the advice command on an estimated model to answer the following
questions about the model:

• Should I increase or decrease the model order?

• Should I estimate a noise model?

• Is feedback present?
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Model Output Plots
System Identification Toolbox lets you validate all linear parametric models
and nonlinear models by checking how well the simulated or predicted output
of the model matches the measured output.

Note For nonparametric models, including impulse-response, step-response,
and frequency-response models, model output plots are not available. For
time-series models, you can only generate model-output plots for parametric
models using time-domain time-series (no input) measured data.

If you plan to use the model for simulation applications, validate the model by
comparing simulated output to the validation data. However, if you plan to
use the model for prediction, compare the k-step-ahead predicted output to the
validation data. For example, if you are modeling a plant for a control system,
your model must perform for prediction over a horizon that corresponds to the
time-constant of the system. For information about the difference between
simulation and prediction, see the introductory chapter in the Getting Started
with System Identification Toolbox.

This section discusses the following topics:

• “What Does a Model Output Plot Show?” on page 9-7

• “Choosing Simulated or Predicted Output” on page 9-8

• “Displaying the Confidence Interval” on page 9-10

• “Plotting Model Output Using the GUI” on page 9-10

• “Using Functions to Plot Model Output” on page 9-13

What Does a Model Output Plot Show?
The model output plot shows different information depending on the domain
of the input-output validation data, as follows:

• For time-domain validation data, the plot shows simulated or predicted
model output.
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• For frequency-domain data, the plot shows the simulated complex-valued
amplitude of the model output. The complex-valued amplitude is equal to
the product of the Fourier transform of the input and the model frequency
function.

• For frequency-response data, the plot shows the simulated amplitude of the
model frequency response.

The following figure shows a sample Model Output plot, created in the System
Identification Tool GUI.

For linear models, you can estimate a model using time-domain data, and
then validate the model using frequency domain data. For nonlinear models,
you can only use time-domain data for both estimation and validation.

Choosing Simulated or Predicted Output
How you validate the model output should match how you plan to use the
model. If you plan to use the model in simulation applications, then compare
the simulated model output to the validation data. However, if you plan to
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use the model for prediction, then compare the predicted output from the
model to the measured output.

The main difference between simulation and prediction is whether System
Identification Toolbox uses measured or computed previous outputs for
calculating the next output.

Using a model for prediction is common in controls applications where you
want to predict output a certain number of steps in advance. When you use
System Identification Toolbox to predict model output, the algorithm uses
both the measured and the calculated output data values in the difference
equation for computing the next output.

The predicted value y(t) is computed from all available inputs u(s), where

s t k≤ −( ) , and all available outputs y(s), where s t k≤ −( ) .

Simulating models uses the input-data values from a data set to compute the
output values. When you simulate the model output, System Identification
Toolbox computes the first output value using the initial conditions and the
inputs. Then, System Identification Toolbox feeds this computed output into
the differential (continuous-time) or difference (discrete-time) equation for
calculating the next output value. In this way, the simulation progresses
using previously calculated outputs in the difference equation to produce the
next output; with an infinite prediction horizon (k=∞), the simulation has no
limit on how far out in time it computes output values. Thus, no past outputs
are used in the simulation.

To check whether the model has picked up interesting dynamic properties, let
the predicted time horizon kT be larger than the important time constants,
where T is the sampling interval.

Note Output-error models, obtained by fixing K to zero for state-space
models and setting na=nc=nd=0 for polynomial models, do not use past
outputs. Therefore, for these models, the simulated and the predicted outputs
are the same for any value of k.
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To learn how to display simulated or predicted output, see the description of
the plot settings in “Plotting Model Output Using the GUI” on page 9-10.

Displaying the Confidence Interval
In the GUI, you can display a confidence interval on the plot to gain insight
into the quality of a linear model. To learn how to show or hide confidence
interval, see the description of the plot settings in “Plotting Model Output
Using the GUI” on page 9-10.

The confidence interval corresponds to the range of output values with
a specific probability of being the actual output of the system. System
Identification Toolbox uses the estimated uncertainty in the model parameters
to calculate confidence intervals and assumes the estimates have a Gaussian
distribution.

For example, for a 95% confidence interval, the region around the nominal
curve represents the range of values that have a 95% probability of being the
true system response. You can specify the confidence interval as a probability
(between 0 and 1) or as the number of standard deviations of a Gaussian
distribution. For example, a probability of 0.99 (99%) corresponds to 2.58
standard deviations.

Note The calculation of the confidence interval assumes that the model
sufficiently describes the system dynamics and the model residuals pass
independence tests.

Plotting Model Output Using the GUI
To create a model output plot for parametric linear and nonlinear models in
the System Identification Tool window, select the Model output check box in
the Model Views area. For general information about creating and working
with plots, see “Working with Plots” on page 2-29.

To include or exclude a model on the plot, click the corresponding model icon
in the System Identification Tool window. Active models display a thick line
inside the Model Board icon.
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The right side of the plot displays the percentage of the output that the model
reproduces (Best Fit), computed using the following equation:

Best Fit = −
−
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ×1 100

y y

y y

ˆ

In this equation, y is the measured output, ŷ is the simulated or predicted

model output, and y is the mean of y. 100% corresponds to a perfect fit,
and 0% indicates that the fit is no better than guessing the output to be a

constant ( ŷ y= ).

Because of the definition of Best Fit, it is possible for this value to be negative.
A negative best fit is worse than 0% and can occur for the following reasons:

• The estimation algorithm failed to converge.

• The model was not estimated by minimizing y y− ˆ . Best Fit can
be negative when you minimized 1-step-ahead prediction during the

estimation, but validate using the simulated output ŷ .

• The validation data set was not preprocessed in the same way as the
estimation data set.

The following table summarizes the Model Output plot settings.
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Model Output Plot Settings

Action Command

Display confidence intervals.

Note Confidence intervals are only
available for simulated model output
of linear models. Confidence internal
are not available for nonlinear ARX
and Hammerstein-Wiener models.

• To display the dashed lines on
either side of the nominal model
curve, select Options > Show
confidence intervals. Select
this option again to hide the
confidence intervals.

• To change the confidence
value, select Options > Set %
confidence level, and choose a
value from the list.

• To enter your own confidence
level, select Options > Set
confidence level > Other.
Enter the value as a probability
(between 0 and 1) or as the
number of standard deviations of
a Gaussian distribution.

Change between simulated output
or predicted output.

Note Prediction is only available
for time-domain validation data.

• Select Options > Simulated
output or Options > k step
ahead predicted output.

• To change the prediction horizon,
select Options > Set prediction
horizon, and select the number
of samples.

• To enter your own prediction
horizon, select Options > Set
prediction horizon > Other.
Enter the value in terms of the
number of samples.

Display the actual output values
(Signal plot), or the difference
between model output and measured
output (Error plot).

Select Options > Signal plot or
Options > Error plot.
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Model Output Plot Settings (Continued)

Action Command

(Time-domain validation data only)
Set the time range for model output
and the time interval for which the
Best Fit value is computed.

Select Options > Customized time
span for fit and enter the minimum
and maximum time values. For
example:

[1 20]

(Multiple-output system only)
Select a different output.

Select the output by name in the
Channel menu.

Using Functions to Plot Model Output
You can plot simulated and predicted model output using the compare, sim,
and predict functions.

Simulation and prediction requires input data, a model, and the values of
the initial states. If you estimated the model using one data set, but want
to simulate the model using a different data set, the initial states of your
simulation must be consistent with the latter data set.

By default, sim and predict use the initial states that were derived from the
data you used to estimate the model. These initial states are not appropriate
if you are simulating or predicting output using new data.

To use sim or predict with a data set that differs from the data you used to
estimate the model, first estimate the new initial states X0est using pe:

[E,X0est]=pe(model,data)

Next, specify the estimated initial states X0est as an argument in sim or
predict. For example:

y=sim(model,data,'InitialState',X0est)
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Note The compare function automatically estimates the initial states from
the data and ensures consistency.

Function Description Example

compare Plots simulated or
predicted model
output on top of the
measured output.
You should use
an independent
validation data set
as input to the model.

To plot five-step-ahead
predicted output of the model
mod against the validation
data data, use the following
command:

compare(data,mod,5)

Note Omitting the third
argument assumes an
infinite horizon and results in
simulation.

sim Plots simulated model
output only.

To simulate the response of
the model model using input
data data, use the following
command:

sim(model,data)

predict Plots predicted model
output only.

To perform one-step-ahead
prediction of the response for
the model model and input
data data, use the following
command:

predict(model,data,1)
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Residual Analysis Plots
You can validate parametric linear and nonlinear models by checking the
behavior of the model residuals. Residuals are differences between the
one-step-predicted output from the model and the measured output from the
validation data set. Thus, residuals represent the portion of the validation
data not explained by the model.

Note For nonparametric models, including impulse-response, step-response,
and frequency-response models, residual analysis plots are not available. For
time-series models, you can only generate model-output plots for parametric
models using time-domain time-series (no input) measured data.

This section discusses the following topics:

• “What Down the Residuals Plot Show?” on page 9-15

• “Overview of Residual Analysis” on page 9-16

• “Displaying the Confidence Interval” on page 9-17

• “Plotting Residuals Using the GUI” on page 9-18

• “Using Functions to Plot Model Residuals ” on page 9-20

What Down the Residuals Plot Show?
Residual analysis plots show different information depending on whether you
use time-domain or frequency-domain input-output validation data.

For time-domain validation data, the plot shows the following two axes:

• Autocorrelation function of the residuals for each output.

• Cross-correlation between the input and the residuals for each input-output
pair.

Note For time-series models, the residual analysis plot does not provide
any input-residual correlation plots.
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The following figure shows a sample Residual Analysis plot, created in the
System Identification Tool GUI.

For frequency-domain validation data, the plot shows the following two axes:

• Estimated power spectrum of the residuals for each output.

• Transfer-function amplitude from the input to the residuals for each
input-output pair.

For linear models, you can estimate a model using time-domain data, and
then validate the model using frequency domain data. For nonlinear models,
System Identification Toolbox supports only time-domain data.

Overview of Residual Analysis
Residual analysis consists of two tests: the whiteness test and the
independence test.

9-16



Residual Analysis Plots

According to the whiteness test criteria, a good model has the residual
autocorrelation function inside the model confidence interval, indicating that
the residuals are uncorrelated.

According to the independence test criteria, a good model has residuals
uncorrelated with past inputs. Evidence of correlation indicates that the
model does not describe how part of the output relates to the corresponding
input. For example, a peak outside the confidence interval for lag k means
that the output y(t) that originates from the input u(t-k) is not properly
described by the model.

Your model should pass both the whiteness and in the independence tests,
except in the following cases:

• For Output-Error models and when using instrumental-variable (IV)
methods, make sure that your model shows independence of e and u, and
pay less attention to the results of the whiteness of e.

In this case, the modeling focus is on the dynamics G and not the
disturbance properties H.

• Correlation between residuals and input for negative lags, is not necessarily
an indication of an inaccurate model.

When current residuals at time t affect future input values, there might
be feedback in your system. In the case of feedback, concentrate on the
positive lags in the cross-correlation plot during model validation.

Displaying the Confidence Interval
You can display a confidence interval on the plot in the GUI to gain insight
into the quality of the model. To learn how to show or hide confidence
interval, see the description of the plot settings in “Plotting Residuals Using
the GUI” on page 9-18.

Note If you are working in the System Identification Tool GUI, you can
specify a custom confidence interval. If you are using the resid command, the
confidence interface is fixed at 99%.
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The confidence interval corresponds to the range of residual values with
a specific probability of being statistically insignificant for the system.
System Identification Toolbox uses the estimated uncertainty in the model
parameters to calculate confidence intervals and assumes the estimates have
a Gaussian distribution.

For example, for a 95% confidence interval, the region around zero represents
the range of residual values that have a 95% probability of being statistically
insignificant. You can specify the confidence interval as a probability
(between 0 and 1) or as the number of standard deviations of a Gaussian
distribution. For example, a probability of 0.99 (99%) corresponds to 2.58
standard deviations.

Plotting Residuals Using the GUI
To create a residual analysis plot for parametric linear and nonlinear models
in the System Identification Tool window, select the Model resids check
box in the Model Views area. For general information about creating and
working with plots, see “Working with Plots” on page 2-29.

To include or exclude a model on the plot, click the corresponding model icon
in the System Identification Tool window. Active models display a thick line
inside the Model Board icon.

The following table summarizes the Residual Analysis plot settings.
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Residual Analysis Plot Settings

Action Command

Display confidence
intervals around zero.

Note Confidence internal
are not available for
nonlinear ARX and
Hammerstein-Wiener
models.

• To display the dashed lines on either
side of the nominal model curve, select
Options > Show confidence intervals.
Select this option again to hide the
confidence intervals.

• To change the confidence value, select
Options > Set % confidence level and
choose a value from the list.

• To enter your own confidence level, select
Options > Set confidence level > Other.
Enter the value as a probability (between
0 and 1) or as the number of standard
deviations of a Gaussian distribution.

Change the number of lags
(data samples) for which
to compute autocorellation
and cross-correlation
functions.

Note For
frequency-domain
validation data, increasing
the number of lags
increases the frequency
resolution of the residual
spectrum and the transfer
function.

• Select Options > Number of lags and
choose the value from the list.

• To enter your own lag value, select
Options > Set confidence level > Other.
Enter the value as the number of data
samples.

(Multiple-output
system only)
Select a different
input-output pair.

Select the input-output by name in the
Channel menu.

9-19



9 Plotting and Validating Models

Using Functions to Plot Model Residuals
The following table summarizes functions that generate residual-analysis
plots for linear and nonlinear models. For detailed information about this
function, see the corresponding reference pages.

Note Apply pe and resid to one model at a time.

Function Description Example

pe Computes and plots model
prediction errors.

To plot the prediction
errors for the model model
using data data, type the
following command:

pe(model,data)

resid Performs whiteness and
independence tests on model
residuals, or prediction
errors. Uses validation data
input as model input.

To plot residual correlations
for the model model using
data data, type the following
command:

resid(model,data)
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Impulse and Step Response Plots
You can plot the simulated response of a model using impulse and step
signals as the input for all linear parametric models and correlation analysis
(nonparametric) models. You can also create step-response plots for nonlinear
models. The step and impulse response plots provide insight into the
characteristics of model dynamics, including peak response and settling time.

Note For frequency-response models, impulse- and step-response plots are
not available. For nonlinear models, only step-response plots are available.

Transient response plots provide insight into the basic dynamic properties
of the model, such as response times, static gains, and delays. Transient
response plots also help you validate how well a linear parametric model, such
as a linear ARX model or a state-space model, captures the dynamics. For
example, you can estimate an impulse or step response from the data using
correlation analysis (nonparametric model), and then plot the correlation
analysis result on top of the transient responses of the parametric models.
Because nonparametric and parametric models are derived using different
algorithms, agreement between these models increases confidence in the
parametric model results.

This section discusses the following topics:

• “What Does a Transient Response Plot Show?” on page 9-21

• “Displaying the Confidence Interval” on page 9-23

• “Plotting Impulse and Step Response Using the GUI” on page 9-23

• “Using Functions to Plot Impulse and Step Response ” on page 9-26

What Does a Transient Response Plot Show?
Transient response plots show the value of the impulse or step response on
the vertical axis. The horizontal axis is in units of time you specified for the
data used to estimate the model.

The impulse response of a dynamic model is the output signal that results
when the input is an impulse. That is, u(t) is zero for all values of t except at
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t=0, where u(0)=1. In the following difference equation, you can compute the
impulse response by setting y(-T)=y(-2T)=0, u(0)=1, and u(t>0)=0.

y t y t T y t T
u t u t T

( ) . ( ) . ( )
. ( ) . ( )

− − + − =
+ −

1 5 0 7 2
0 9 0 5       

The step response is the output signal that results from a step input, where
u(t<0)=0 and u(t>0)=1.

If your model includes a noise model, you can display the transient response
of the noise model associated with each output channel. For more information
on how to display the transient response of the noise model, see “Plotting
Impulse and Step Response Using the GUI” on page 9-23

The following figure shows a sample Transient Response plot, created in
the System Identification Tool GUI.
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Displaying the Confidence Interval
In addition to the transient-response curve, you can display a confidence
interval on the plot. To learn how to show or hide confidence interval, see
the description of the plot settings in “Plotting Impulse and Step Response
Using the GUI” on page 9-23.

The confidence interval corresponds to the range of response values with
a specific probability of being the actual response of the system. System
Identification Toolbox uses the estimated uncertainty in the model parameters
to calculate confidence intervals and assumes the estimates have a Gaussian
distribution.

For example, for a 95% confidence interval, the region around the nominal
curve represents the range of values that have a 95% probability of being the
true system response. You can specify the confidence interval as a probability
(between 0 and 1) or as the number of standard deviations of a Gaussian
distribution. For example, a probability of 0.99 (99%) corresponds to 2.58
standard deviations.

Note The calculation of the confidence interval assumes that the model
sufficiently describes the system dynamics and the model residuals pass
independence tests.

Plotting Impulse and Step Response Using the GUI
To create a transient analysis plot in the System Identification Tool window,
select the Transient resp check box in the Model Views area. For general
information about creating and working with plots, see “Working with Plots”
on page 2-29.

To include or exclude a model on the plot, click the corresponding model icon
in the System Identification Tool window. Active models display a thick line
inside the Model Board icon.

The following table summarizes the Transient Response plot settings.
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Transient Response Plot Settings

Action Command

Display step response for linear
or nonlinear model.

Select Options > Step response.

Display impulse response for
linear model.

Select Options > Impulse response.

Note Not available for nonlinear
models.

Display confidence interval.

Note Only available for linear
models.

• To display the dashed lines on either
side of the nominal model curve,
select Options > Show confidence
intervals. Select this option again to
hide the confidence intervals.

• To change the confidence value, select
Options > Set % confidence level,
and choose a value from the list.

• To enter your own confidence level,
select Options > Set confidence
level > Other. Enter the value as a
probability (between 0 and 1) or as
the number of standard deviations of
a Gaussian distribution.
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Transient Response Plot Settings (Continued)

Action Command

Change time span over which
the impulse or step response is
calculated. For a scalar time
span T, the resulting response is
plotted from -T/4 to T.

Note To change the time span
of models you estimated using
correlation analysis models,
select Estimate > Correlation
models and reestimate the
model using a new time span.

• Select Options > Time span (time
units), and choose a new time span
in units of time you specified for the
model.

• To enter your own time span,
select Options > Time span (time
units) > Other, and enter the total
response duration.

• To use the time span based on model
dynamics, type [] or default.

The default time span is computed
based on the model dynamics and
might be different for different
models. For nonlinear models, the
default time span is 10.

Toggle between line plot or stem
plot.

Tip Use a stem plot for
displaying impulse response.

Select Style > Line plot or
Style > Stem plot.
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Transient Response Plot Settings (Continued)

Action Command

(Multiple-output system only)
Select an input-output pair
to view the noise spectrum
corresponding to those channels.

Select the output by name in the
Channel menu.

If the plotted models include a noise
model, you can display the transient
response properties associated with
each output channel. The name of the
channel has the format e@OutputName,
where OutputName is the name of the
output channel corresponding to the
noise model.

(Step response for
nonlinear models only)
Set level of the input step.

Note For multiinput models,
the input-step level applies only
to the input channel you selected
to display in the plot.

Select Options > Step Size, and then
chose from two options:

• 0–>1 sets the lower level to 0 and the
upper level to 1.

• Other opens the Step Level dialog
box, where you enter the values for
the lower and upper level values.

Using Functions to Plot Impulse and Step Response
You can plot impulse- and step-response plots using the impulse and step
functions, respectively.

All plot commands have the same basic syntax, as follows:

• To plot one model, use the syntax command(model).

• To plot several models, use the syntax
command(model1,model2,...,modelN).

In this case, command represents any of the plotting functions.
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To display confidence intervals for a specified number of standard deviations,
use the following syntax:

command(model,'sd',sd)

where sd is the number of standard deviations of a Gaussian distribution. For
example, a confidence value of 99% for the nominal model curve corresponds
to 2.58 standard deviations.

To display a filled confidence region, use the following syntax:

command(model,'sd',sd,'fill')

The following table summarizes functions that generate impulse- and
step-response plots. For detailed information about each function, see the
corresponding reference pages.
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Function Description Example

impulse Plots impulse response
for idpoly, idproc,
idarx, idss, and
idgrey model objects.
Estimates and plots
impulse response
models for iddata
objects.

Note Does not
support nonlinear
models.

To plot the impulse response
of the model mod, type the
following command:

impulse(mod)

step Plots the step response
of all linear and
nonlinear models.

Estimates and plots
step response models
for iddata objects.

To plot the step response
of the model mod, type the
following command:

step(mod)

To specify step levels for a
nonlinear model, type the
following command:

step(mod,
'InputLevel',[u1;u2])
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Frequency Response Plots
You can plot the frequency response of a model to gain insight into the
characteristics of linear model dynamics, including the frequency of the peak
response and stability margins. Frequency-response plots are available for all
linear parametric models and spectral analysis (nonparametric) models.

Note Frequency-response plots are not available for nonlinear models. In
addition, Nyquist plots do not support time-series models that have no input.

The frequency response of a linear dynamic model describes how the model
reacts to sinusoidal inputs. If the input u(t) is a sinusoid of a certain frequency,
then the output y(t) is also a sinusoid of the same frequency. However, the
magnitude of the response is different from the magnitude of the input signal,
and the phase of the response is shifted relative to the input signal.

Frequency response plots provide insight into linear systems dynamics, such
as frequency-dependent gains, resonances, and phase shifts. Frequency
response plots also contain information about controller requirements and
achievable bandwidths. Finally, frequency response plots can also help you
validate how well a linear parametric model, such as a linear ARX model or a
state-space model, captures the dynamics.

One example of how frequency-response plots help validate other models
is that you can estimate a frequency response from the data using spectral
analysis (nonparametric model), and then plot the spectral analysis result
on top of the frequency response of the parametric models. Because
nonparametric and parametric models are derived using different algorithms,
agreement between these models increases confidence in the parametric
model results.

This section discusses the following topics:

• “What Is a Frequency Response?” on page 9-30

• “What Does a Frequency-Response Plot Show?” on page 9-30

• “Plotting Bode Plots Using the GUI” on page 9-32
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• “Using Functions to Create Bode and Nyquist Plots ” on page 9-34

What Is a Frequency Response?
Frequency response plots show the complex values of a transfer function as a
function of frequency.

In the case of linear dynamic systems, the transfer function G is essentially
an operator that takes the input u of a linear system to the output y:

y Gu=

For a continuous-time system, the transfer function relates the Laplace
transforms of the input U(s) and outputY(s):

Y s G s U s( ) ( ) ( )=

In this case, the frequency function G(iw) is the transfer function evaluated
on the imaginary axis s=iw.

For a discrete-time system sampled with a time interval T, the transfer
function relates the Z-transforms of the input U(z) and output Y(z):

Y z G z U z( ) ( ) ( )=

In this case, the frequency function G(eiwT) is the transfer function G(z)
evaluated on the unit circle. The argument of frequency function G(eiwT) is
scaled by the sampling interval T to make the frequency function periodic

with the sampling frequency 2π
T .

What Does a Frequency-Response Plot Show?
System Identification Tool supports the following types of frequency-response
plots for linear parametric models, linear state-space models, and
nonparametric frequency-response models:

• Bode plot of the model response. A Bode plot consists of two plots. The top

plot shows the magnitude G by which the transfer function G magnifies
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the amplitude of the sinusoidal input. The bottom plot shows the phase

ϕ = arg G by which the transfer function shifts the input. The input to
the system is a sinusoid, and the output is also a sinusoid with the same
frequency.

• Bode plot of the disturbance model, called noise spectrum.
This plot is the same as a Bode plot of the model response, but it shows the
frequency response of the noise model instead. For more information, see
“Noise Spectrum Plots” on page 9-36.

• (Only in MATLAB Command Window)
Nyquist plot. Plots the imaginary versus the real part of
the transfer function.

The following figure shows a sample Bode plot of the model dynamics, created
in the System Identification Tool GUI.
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Plotting Bode Plots Using the GUI
To create a frequency-response plot for parametric linear models in the
System Identification Tool window, select the Frequency resp check box in
the Model Views area. For general information about creating and working
with plots, see “Working with Plots” on page 2-29.

To include or exclude a model on the plot, click the corresponding model icon
in the System Identification Tool window. Active models display a thick line
inside the Model Board icon.

In addition to the frequency-response curve, you can display a confidence
interval on the plot. The confidence interval corresponds to the range of
response values with a specific probability of being the actual response of
the system. System Identification Toolbox uses the estimated uncertainty
in the model parameters to calculate confidence intervals and assumes the
estimates have a Gaussian distribution.

For example, for a 95% confidence interval, the region around the nominal
curve represents the range of values that have a 95% probability of being the
true system response. You can specify the confidence interval as a probability
(between 0 and 1) or as the number of standard deviations of a Gaussian
distribution. For example, a probability of 0.99 (99%) corresponds to 2.58
standard deviations.

The following table summarizes the Frequency Function plot settings.
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Frequency Function Plot Settings

Action Command

Display confidence interval. • To display the dashed lines on either
side of the nominal model curve, select
Options > Show confidence intervals.
Select this option again to hide the
confidence intervals.

• To change the confidence value, select
Options > Set % confidence level, and
choose a value from the list.

• To enter your own confidence level,
select Options > Set confidence
level > Other. Enter the value as a
probability (between 0 and 1) or as
the number of standard deviations of a
Gaussian distribution.

Change the frequency
values for computing the
noise spectrum.

The default frequency
vector is 128 linearly
distributed values, greater
than zero and less than
or equal to the Nyquist
frequency.

Select Options > Frequency range and
specify a new frequency vector in units of
rad/s.Enter the frequency vector using any
one of following methods:

• MATLAB expression, such as
[1:100]*pi/100 or logspace(-3,-1,200).
Cannot contain variables in the MATLAB
workspace.

• Row vector of values, such as [1:.1:100]

Note To restore the default frequency vector,
enter [].

Change frequency units
between hertz and radians
per second.

Select Style > Frequency (Hz) or
Style > Frequency (rad/s).
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Frequency Function Plot Settings (Continued)

Action Command

Change frequency scale
between linear and
logarithmic.

Select Style > Linear frequency scale or
Style > Log frequency scale.

Change amplitude scale
between linear and
logarithmic.

Select Style > Linear amplitude scale or
Style > Log amplitude scale.

(Multiple-output
system only)
Select an input-output
pair to view the noise
spectrum corresponding to
those channels.

Note You cannot view
cross spectra between
different outputs.

Select the output by name in the Channel
menu.

Using Functions to Create Bode and Nyquist Plots
You can plot Bode and Nyquist plots for linear models using the bode, ffplot,
and nyquist functions.

All plot commands have the same basic syntax, as follows:

• To plot one model, use the syntax command(model).

• To plot several models, use the syntax
command(model1,model2,...,modelN).

In this case, command represents any of the plotting functions.

To display confidence intervals for a specified number of standard deviations,
use the following syntax:
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command(model,'sd',sd)

where sd is the number of standard deviations of a Gaussian distribution. For
example, a confidence value of 99% for the nominal model curve corresponds
to 2.58 standard deviations.

To display a filled confidence region, use the following syntax:

command(model,'sd',sd,'fill')

The following table summarizes functions that generate Bode and Nyquist
plots for linear models. For detailed information about each function and
how to specify the frequency values for computing the response, see the
corresponding reference pages.

Function Description Example

bode Plots the magnitude
and phase of the
frequency response on
a logarithmic frequency
scale.

To create the bode plot
of the model mod, use
the following command:

bode(mod)

ffplot Plots the magnitude
and phase of the
frequency response
on a linear frequency
scale (hertz).

To create the bode plot
of the model mod, use
the following command:

ffplot(mod)

nyquist Plots the imaginary
versus real part of the
transfer function.

Note Does not support
time-series models.

To plot the frequency
response of the model
mod, use the following
command:

nyquist(mod)
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Noise Spectrum Plots
When you estimate the noise model of your linear system, System
Identification Toolbox lets you plot the spectrum of the estimated noise model.
Noise-spectrum plots are available for all linear parametric models and
spectral analysis (nonparametric) models.

Note For nonlinear models and correlation analysis models, noise-spectrum
plots are not available. For time-series models, you can only generate
noise-spectrum plots for parametric and spectral-analysis models.

This section discusses the following topics:

• “What Does a Noise Spectrum Plot Show?” on page 9-36

• “Displaying the Confidence Interval” on page 9-37

• “Plotting Noise Spectrum Using the GUI” on page 9-38

• “Using Functions to Plot Noise Spectrum” on page 9-41

What Does a Noise Spectrum Plot Show?
The general equation of a linear dynamic system is given by:

y t G z u t v t( ) ( ) ( ) ( )= +

In this equation, G is an operator that takes the input to the output and
captures the system dynamics, and v is the additive noise term. In System
Identification Toolbox, the noise term is treated as filtered white noise, as
follows:

v t H z e t( ) ( ) ( )=

System Identification Toolbox computes both H and λ during the estimation
of the noise model and stores these quantities as model properties. The
H(z) operator represents the noise model. e(t) is a white-noise source with
variance λ .
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Whereas the frequency-response plot in System Identification Toolbox shows
the response of G, the noise-spectrum plot shows the frequency-response
of the noise model H.

For input-output models, the noise spectrum is given by the following
equation:

Φv
iH e( )ω λ ω= ( ) 2

For time-series models (no input), the vertical axis of the noise-spectrum plot
is the same as the dynamic model spectrum. These axes are the same because

there is no input for time series and y He= .

Note You can avoid estimating the noise model by selecting the Output-Error
model structure or by setting the DisturbanceModel property value to 'None'
for a state space model. If you choose to not estimate a noise model for
your system, then H and the noise spectrum amplitude are equal to 1 at all
frequencies.

Displaying the Confidence Interval
In addition to the noise-spectrum curve, you can display a confidence interval
on the plot. To learn how to show or hide confidence interval, see the
description of the plot settings in “Plotting Noise Spectrum Using the GUI”
on page 9-38.

The confidence interval corresponds to the range of power-spectrum values
with a specific probability of being the actual noise spectrum of the system.
System Identification Toolbox uses the estimated uncertainty in the model
parameters to calculate confidence intervals and assumes the estimates have
a Gaussian distribution.

For example, for a 95% confidence interval, the region around the nominal
curve represents the range of values that have a 95% probability of being the
true system noise spectrum. You can specify the confidence interval as a
probability (between 0 and 1) or as the number of standard deviations of a
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Gaussian distribution. For example, a probability of 0.99 (99%) corresponds
to 2.58 standard deviations.

Note The calculation of the confidence interval assumes that the model
sufficiently describes the system dynamics and the model residuals pass
independence tests.

Plotting Noise Spectrum Using the GUI
To create a noise spectrum plot for parametric linear models in the System
Identification Tool window, select the Noise spectrum check box in the
Model Views area. For general information about creating and working with
plots, see “Working with Plots” on page 2-29.

To include or exclude a model on the plot, click the corresponding model icon
in the System Identification Tool window. Active models display a thick line
inside the Model Board icon.

The following figure shows a sample Noise Spectrum plot.
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The following table summarizes the Noise Spectrum plot settings.
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Noise Spectrum Plot Settings

Action Command

Display confidence
interval.

• To display the dashed lines on either side of the
nominal model curve, select Options > Show
confidence intervals. Select this option
again to hide the confidence intervals.

• To change the confidence value, select
Options > Set % confidence level, and
choose a value from the list.

• To enter your own confidence level, select
Options > Set confidence level > Other.
Enter the value as a probability (between 0
and 1) or as the number of standard deviations
of a Gaussian distribution.

Change the frequency
values for computing
the noise spectrum.

The default frequency
vector is 128 linearly
distributed values,
greater than zero and
less than or equal to the
Nyquist frequency.

Select Options > Frequency range and specify
a new frequency vector in units of radians per
second.Enter the frequency vector using any one
of following methods:

• MATLAB expression, such as [1:100]*pi/100
or logspace(-3,-1,200). Cannot contain
variables in the MATLAB workspace.

• Row vector of values, such as [1:.1:100]

Note To restore the default frequency vector,
enter [].

Change frequency units
between hertz and
radians per second.

Select Style > Frequency (Hz) or
Style > Frequency (rad/s).

Change frequency scale
between linear and
logarithmic.

Select Style > Linear frequency scale or
Style > Log frequency scale.
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Noise Spectrum Plot Settings (Continued)

Action Command

Change amplitude scale
between linear and
logarithmic.

Select Style > Linear amplitude scale or
Style > Log amplitude scale.

(Multiple-output
system only)
Select an input-output
pair to view the noise
spectrum corresponding
to those channels.

Note You cannot view
cross spectra between
different outputs.

Select the output by name in the Channel menu.

Using Functions to Plot Noise Spectrum
To plot the frequency-response of the noise model, use a combination of
System Identification Toolbox commands.

First, select the portion of the model object that corresponds to the noise
model H. For example, to select the noise model in the model object m, type
the following command:

m_noise=m('noise')

Tip You can abbreviate the command to m_noise=m('n').

To plot the frequency-response of the noise model, use the bode command:

bode(m_noise)
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To determine if your estimated noise model is good enough, you can compare
the frequency-response of the estimated noise-model H to the estimated
frequency response of v(t). To compute v(t), which represents the actual noise
term in the system, use the following commands:

ysimulated = sim(m,data);
v = ymeasured-ysimulated;

ymeasured is data.y. v is the noise term v(t), as described in “What Does a
Noise Spectrum Plot Show?” on page 9-36 and corresponds to the difference
between the simulated response ysimulated and the actual response
ymeasured.

To compute the frequency-response model of the actual noise, use spa:

V = spa(v);

System Identification Toolbox uses the following equation to compute the
noise spectrum of the actual noise:

Φv v
iR e( )ω τ

τ

ωτ= ( )
=−∞

∞
−∑

The covariance function Rv is given in terms of E, which denotes the
mathematical expectation, as follows:

R Ev t v tv τ τ( ) = ( ) −( )

To compare the parametric noise-model H to the (nonparametric)
frequency-response estimate of the actual noise v(t), use bode:

bode(V,m('noise'))

If the parametric and the nonparametric estimates of the noise spectra are
different, then you might need a higher-order noise model.
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Pole-Zero Plots
You can create pole-zero plots of linear polynomial, state-space, and grey-box
models.

This section discusses the following topics:

• “What Does a Pole-Zero Plot Show?” on page 9-43

• “Plotting Model Poles and Zeros Using the GUI” on page 9-44

• “Using Functions to Create Pole-Zero Plots” on page 9-46

• “Reducing Model Order Using Pole-Zero Plots” on page 9-46

What Does a Pole-Zero Plot Show?
The general equation of a linear dynamic system is given by:

y t G z u t v t( ) ( ) ( ) ( )= +

In this equation, G is an operator that takes the input to the output and
captures the system dynamics, and v is the additive noise term.

The poles of a linear system are the roots of the denominator of the transfer
function G. The poles have a direct influence on the dynamic properties of
the system. The zeros are the roots of the numerator of G. If you estimated
a noise model H in addition to the dynamic model G, you can also view the
poles and zeros of the noise model.

Zeros and the poles are equivalent ways of describing the coefficients of a
linear difference equation, such as the ARX model. Poles are associated with
the output side of the difference equation, and zeros are associated with the
input side of the equation. The number of poles is equal to the number of
sampling intervals between the most-delayed and least-delayed output. The
number of zeros) is equal to the number of sampling intervals between the
most-delayed and least-delayed input. For example, there two poles and one
zero in the following ARX model:

y t y t T y t T
u t u t T

( ) . ( ) . ( )
. ( ) . ( )

− − + − =
+ −

1 5 0 7 2
0 9 0 5       
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The following figure shows a sample pole-zero plot of the model with
confidence intervals. x indicate poles and o indicate zeros.

Plotting Model Poles and Zeros Using the GUI
To create a pole-zero plot for parametric linear models in the System
Identification Tool window, select the Zeros and poles check box in the
Model Views area. For general information about creating and working with
plots, see “Working with Plots” on page 2-29.

To include or exclude a model on the plot, click the corresponding model icon
in the System Identification Tool window. Active models display a thick line
inside the Model Board icon.

In addition, you can display a confidence interval for each pole and zero on
the plot. The confidence interval corresponds to the range of pole or zero
values with a specific probability of being the actual pole or zero of the system.
System Identification Toolbox uses the estimated uncertainty in the model
parameters to calculate confidence intervals and assumes the estimates have
a Gaussian distribution.
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For example, for a 95% confidence interval, the region around the nominal
pole or zero value represents the range of values that have a 95% probability
of being the true system pole or zero value. You can specify the confidence
interval as a probability (between 0 and 1) or as the number of standard
deviations of a Gaussian distribution. For example, a probability of 0.99 (99%)
corresponds to 2.58 standard deviations.

The following table summarizes the Zeros and Poles plot settings.

Zeros and Poles Plot Settings

Action Command

Display confidence
interval.

• To display the dashed lines on either side
of the nominal pole and zero values, select
Options > Show confidence intervals.
Select this option again to hide the confidence
intervals.

• To change the confidence value, select
Options > Set % confidence level, and
choose a value from the list.

• To enter your own confidence level, select
Options > Set confidence level > Other.
Enter the value as a probability (between 0
and 1) or as the number of standard deviations
of a Gaussian distribution.

Show real and
imaginary axes.

Select Style > Re/Im-axes. Select this option
again to hide the axes.

Show unit circle. Select Style > Unit circle. Select this option
again to hide the unit circle.

(Multiple-output
system only)
Select an input-output
pair to view the poles
and zeros corresponding
to those channels.

Select the output by name in the Channel menu.
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Using Functions to Create Pole-Zero Plots
You can create a pole-zero plot for linear polynomial, linear state-space, and
linear grey-box models using the pzmap function. pzmap lets you include
several models on a plot.

To display confidence intervals for a specified number of standard deviations,
use the following syntax:

pzmap(model,'sd',sd)

where sd is the number of standard deviations of a Gaussian distribution. For
example, a confidence value of 99% for the nominal model curve corresponds
to 2.58 standard deviations.

The following table provides basic information about pzmap. For detailed
information about this function, see the corresponding reference pages.

Function Description Example

pzmap Plots zeros and poles
of the model on the
S-plane or Z-plane for
continuous-time or
discrete-time model,
respectively.

To plot the poles and
zeros of the model
mod, use the following
command:

pzmap(mod)

Reducing Model Order Using Pole-Zero Plots
You can use pole-zero plots to evaluate whether it might be useful to reduce
model order. When confidence intervals for a pole-zero pair overlap, this
overlap indicates a possible pole-zero cancellation.

For example, you can use the following syntax to plot a 1-standard-deviation
confidence interval around model poles and zeros.

pzmap(model,'sd',1)

If poles and zeros overlap, try estimating a lower-order model.
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Always validate model output and residuals to see if the quality of the
fit changes after reducing model order. If the plot indicates pole-zero
cancellations, but reducing model order degrades the fit, then the extra
poles probably describe noise. In this case, you can choose a different model
structure that decouples system dynamics and noise. For example, try
ARMAX, Output-Error, or Box-Jenkins polynomial model structures with
an A or F polynomial of an order equal to that of the number of uncanceled
poles. For more information about estimating linear polynomial models, see
“Black-Box Polynomial Models” on page 5-42.
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Nonlinear ARX Plots
The Nonlinear ARX plot displays the characteristics of model nonlinearities
as a function of one or two regressors. For more information about estimating
nonlinear ARX models, see “Estimating Nonlinear ARX Models” on page 6-5.

Examining a nonlinear ARX plot can help you gain insight into which
regressors have the strongest effect on the model output. Understanding the
relative importance of the regressors on the output can help you decide which
regressors should be included in the nonlinear function.

Furthermore, you can create several nonlinear models for the same data
set using different nonlinearity estimators, such a wavelet network and
tree partition, and then compare the nonlinear surfaces of these models.
Agreement between nonlinear surfaces increases the confidence that these
nonlinear models capture the true dynamics of the system.

To create a nonlinear ARX plot in the System Identification Tool window,
select the Nonlinear ARX check box in the Model Views area. For general
information about creating and working with plots, see “Working with Plots”
on page 2-29.

Note The Nonlinear ARX check box is unavailable if you do not have a
nonlinear ARX model in the Model Board.

The following figure shows a sample nonlinear ARX plot.

9-48



Nonlinear ARX Plots

This section discusses the following topics:

• “Configuring the Nonlinear ARX Plot” on page 9-49

• “Axis Limits, Legend, and 3-D Rotation” on page 9-50

• “Using plot to Create Nonlinear ARX Plots” on page 9-51

Configuring the Nonlinear ARX Plot
To include or exclude a model on the plot, click the corresponding model icon
in the System Identification Tool window. Active models display a thick line
inside the Model Board icon.

To configure the plot, perform the following steps:
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1 If your model contains multiple output, select the output channel in the
Select nonlinearity at output list. Selecting the output channel displays
the nonlinearity values that correspond to this output channel.

2 If the regressor selection options are not visible, click to expand the
Nonlinear ARX Model Plot window.

3 Select Regressor 1 from the list of available regressors. In the Range
field, enter the range of values to include on the plot for this regressor. The
regressor values are plotted on the Reg1 axis.

4 Specify a second regressor for a 3-D plot by selecting one of the following
types of options:

• Select Regressor 2 to display three axes. In the Range field, enter the
range of values to include on the plot for this regressor. The regressor
values are plotted on the Reg2 axis.

• Select <none> in the Regressor 2 list to display only two axes.

5 To fix the values of the regressor that are not displayed, click Fix Values.
In the Fix Regressor Values dialog box, double-click the Value cell to edit
the constant value of the corresponding regressor. The default values are
determined during model estimation. Click OK.

6 In the Nonlinear ARX Model Plot window, click Apply to update the plot.

7 To change the grid of the regressor space along each axis, Options > Set
number of samples, and enter the number of samples to use for each
regressor. Click Apply and then Close.

For example, if the number of samples is 20, each regressor variable
contains 20 points in its specified range. For a 3-D plots, this results in
evaluating the nonlinearity at 20 x 20 = 400 points.

Axis Limits, Legend, and 3-D Rotation
The following table summarizes the commands to modify the appearance
of the Nonlinear ARX plot.

9-50



Nonlinear ARX Plots

Changing Appearance of the Nonlinear ARX Plot

Action Command

Change axis limits. Select Options > Set axis limits to
open the Axis Limits dialog box, and
edit the limits. Click Apply.

Hide or show the legend. Select Style > Legend. Select this
option again to show the legend.

(Three axes only)
Rotate in three dimensions.

Note Available only when you
have selected two regressors as
independent variables.

Select Style > 3D Rotate and
drag the axes on the plot to
a new orientation. To disable
three-dimensional rotation, select
Style > 3D Rotate again.

Using plot to Create Nonlinear ARX Plots
You can plot the nonlinearity shape of nonlinear ARX models using the
following syntax:

plot(model)

model must be an idnlarx model object. You can use additional plot
arguments to specify the following information:

• Include multiple nonlinear ARX models on the plot.

• Configure the regressor values for computing the nonlinearity values.

The plot command opens the Nonlinear ARX Model Plot window. For
more information about working with this plot window, see “Configuring
the Nonlinear ARX Plot” on page 9-49 and “Axis Limits, Legend, and 3-D
Rotation” on page 9-50.

For detailed information about plot, type the following command at the
MATLAB prompt:
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help idnlarx/plot
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Hammerstein-Wiener Plots
Hammerstein-Wiener model plot lets you explore the characteristics of the
linear block and the static nonlinearities of the Hammerstein-Wiener model.
For more information about estimating nonlinear Hammerstein-Wiener
models, see “Estimating Hammerstein-Wiener Models” on page 6-35.

Examining a Hammerstein-Wiener plot can help you determine whether you
chose an unnecessarily complicated nonlinearity for modeling your system.
For example, if you chose a piecewise-linear nonlinearity (which is very
general), but the plot indicates saturation behavior, then you can estimate a
new model using the simpler saturation nonlinearity instead.

For multivariable systems, you can use the Hammerstein-Wiener plot
to determine whether to exclude nonlinearities for specific channels. If
the nonlinearity for a specific input or output channel does not exhibit
strong nonlinear behavior, you can estimate a new model after setting the
nonlinearity at that channel to unit gain.

To create a Hammerstein-Wiener plot in the System Identification Tool
window, select the Hamm-Wiener check box in the Model Views area. For
general information about creating and working with plots, see “Working
with Plots” on page 2-29.

Note The Hamm-Wiener check box is unavailable if you do not have a
Hammerstein-Wiener model in the Model Board.

To include or exclude a model on the plot, click the corresponding model icon
in the System Identification Tool window. Active models display a thick line
inside the model icon, as shown in the following figure.
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This section discusses the following topics:

• “Plotting Nonlinear Block Characteristics” on page 9-54

• “Plotting Linear Block Characteristics” on page 9-55

• “Using plot to Create Hammerstein-Wiener Plots” on page 9-56

Plotting Nonlinear Block Characteristics
The Hammerstein-Wiener model can contain up to two nonlinear blocks. The
nonlinearity at the input to the Linear Block is labeled uNL and is called the
input nonlinearity. The nonlinearity at the output of the Linear Block is
labeled yNL and is called the output nonlinearity.

To configure the plot, perform the following steps:
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1 If the top panel is not visible, click to expand the Hammerstein-Wiener
Model Plot window.

2 Select the nonlinear block you want to plot:

• To plot uNL as a function of the input data, click the uNL block.

• To plot yNL as a function of its inputs, click the yNL block.

The selected block is highlighted in green.

Note An input to the output nonlinearity block yNL is the output from the
Linear Block and not the measured input data.

3 If your model contains multiple variables, select the channel in the Select
nonlinearity at channel list. Selecting the channel updates the plot
and displays the nonlinearity values versus the corresponding input to
this nonlinear block.

4 To change the range of the horizontal axis, select Options > Set input
range to open the Range for Input to Nonlinearity dialog box. Enter the
range using the format [MinValue MaxValue]. Click Apply and then
Close to update the plot.

Plotting Linear Block Characteristics
The Hammerstein-Wiener model contains one Linear Block that represents
the embedded linear model.

To configure the plot, perform the following steps:

1 If the top panel is not visible, click to expand the Hammerstein-Wiener
Model Plot window.

2 Click the Linear Block to select it. The Linear Block is highlighted in green.

3 In the Select I/O pair list, select the input and output data pair for which
to view the response.
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4 In the Choose plot type list, select the linear plot from the following
options:

• Step

• Impulse

• Bode

• Pole-Zero Map

5 If you selected to plot step or impulse response, you can set the time span.
Select Options > Time span and enter a new time span in units of time
you specified for the model.

For a time span T, the resulting response is plotted from -T/4 to T. The
default time span is 10.

Click Apply and then Close.

6 If you selected to plot a Bode plot, you can set the frequency range.

The default frequency vector is 128 linearly distributed values, greater
than zero and less than or equal to the Nyquist frequency. To change the
range, select Options > Frequency range, and specify a new frequency
vector in units of rad per model time units.

Enter the frequency vector using any one of following methods:

• MATLAB expression, such as [1:100]*pi/100 or logspace(-3,-1,200).
Cannot contain variables in the MATLAB workspace.

• Row vector of values, such as [1:.1:100]

Click Apply and then Close.

Using plot to Create Hammerstein-Wiener Plots
You can plot input and output nonlinearity and linear responses for
Hammerstein-Wiener models using the following syntax:

plot(model)

model must be an idnlhw model object. You can use additional plot
arguments to specify the following information:
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• Include several Hammerstein-Wiener models on the plot.

• Configure how to evaluate the nonlinearity at each input and output
channel.

• Specify the time or frequency values for computing transient and frequency
response plots of the linear block.

The plot command opens the Hammerstein-Wiener Model Plot window.
For more information about working with this plot window, see “Plotting
Nonlinear Block Characteristics” on page 9-54 and “Plotting Linear Block
Characteristics” on page 9-55.

For detailed information about plot, type the following command at the
MATLAB prompt:

help idnlhw/plot
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Using Akaike’s Final Prediction Error and Information
Criterion

If you use the same data set to both model estimation and validation, the fit
always improves you increase the model order and the flexibility of the model
structure increases.

Akaike’s Final Prediction Error (FPE) criterion and his closely related
Information Criterion (AIC) provide a measure of model quality by simulating
the situation where the model is tested on a different data set.

After computing several different models, you can compare them using
these criteria. According to Akaike’s theory, the most accurate model has
the smallest FPE and AIC.

This section discusses the following topics:

• “Definition of FPE” on page 9-58

• “Computing FPE” on page 9-59

• “Definition of AIC” on page 9-59

• “Computing AIC” on page 9-60

Definition of FPE
Akaike’s Final Prediction Error (FPE) is defined by the following equation:
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where V is the loss function, d is the number of estimated parameters, and
N is the number of estimation data.

The loss function V is defined by the following equation:
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where θ̂N represents the estimated parameters.

Computing FPE
Use the fpe function to compute Akaike’s Final Prediction Error (FPE)
criterion for one or more linear or nonlinear models, as follows:

FPE = fpe(m1,m2,m3,...,mN)

According to Akaike’s theory, the most accurate model has the smallest FPE.

You can also access the FPE value of an estimated model by accessing the
FPE field of the EstimationInfo property of this model. For example, if you
estimated the model m, you can access its FPE using the following command:

m.EstimationInfo.FPE

Definition of AIC
Akaike’s Information Criterion (AIC) is defined by the following equation:

AIC V
d

N
= +log

2

where V is the loss function, d is the number of estimated parameters, and N
is the number of values in the estimation data set.

The loss function V is defined by the following equation:
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For d N<<

AIC V
d

N
= + +⎛

⎝⎜
⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟log 1

2

9-59
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Computing AIC
Use the aic function to compute Akaike’s Information Criterion (AIC) for one
or more linear or nonlinear models, as follows:

AIC = aic(m1,m2,m3,...,mN)

According to Akaike’s theory, the most accurate model has the smallest AIC.
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Viewing Model Uncertainty
In addition to estimating model parameters, the System Identification Toolbox
estimation algorithms also estimate variability of the model parameters that
result from random disturbances in the output.

Understanding model variability helps you to understand how different your
model parameters would be if you repeated the estimation using a different
data set (with the same input sequence as the original data set) and the same
model structure.

When validating your parametric models, check the uncertainty values.
Large uncertainties in the parameters might be caused by high model orders,
inadequate excitation, and poor signal-to-noise ratio in the data.

Note You can get model uncertainty data for linear parametric black-box
models, and both linear and nonlinear grey-box models. Supported model
objects include idproc, idpoly, idss, idarx, idgrey, idfrd, and idnlgrey.

This section discusses the following topics:

• “What Is Model Covariance?” on page 9-61

• “Viewing Model Uncertainty Information” on page 9-62

What Is Model Covariance?
Uncertainty in the model is called model covariance.

If you estimate model uncertainty data, this information is stored in the
Model.CovarianceMatrix model property. The covariance matrix is used to
compute all uncertainties in model output, Bode plots, residual plots, and
pole-zero plots.

Computing the covariance matrix is based on the assumption that the model
structure gives the correct description of the system dynamics. For models
that include a disturbance model H, a correct uncertainty estimate assumes
that the model produces white residuals. To determine whether you can trust
the estimated model uncertainty values, perform residual analysis tests on
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your model, as described in “Residual Analysis Plots” on page 9-15. If your
model passes residual analysis tests, there is a good chance that the true
system lies within the confidence interval and any parameter uncertainties
results from random disturbances in the output.

In the case of output-error models, where the noise model H is fixed to 1,
computing the covariance matrix does not assume that the residuals are
white. Instead, the covariance is estimated based on the estimated color of the
residual correlations. This estimation of the noise color is also performed for
state-space models with K=0, which is equivalent to an output-error model.

Viewing Model Uncertainty Information
You can view the following uncertainty information from linear and nonlinear
grey-box models:

• Uncertainties of estimated parameters.

Type present(model) at the MATLAB prompt, where model represents
the name of a linear or nonlinear model.

• Confidence intervals on the linear model plots, including step-response,
impulse-response, Bode, and pole-zero plots.

Confidence intervals are computed based on the variability in the model
parameters. For information about displaying confidence intervals, see the
corresponding plot section.

• Covariance matrix of the estimated parameters in linear and nonlinear
grey-box models.

Type model.CovarianceMatrix at the MATLAB prompt, where model
represents the name of the model object.

• Estimated standard deviations of polynomial coefficients or state-space
matrices

Type model.dA at the MATLAB prompt to access the estimated standard
deviations of the model.A estimated property, where model represents the
name of the model object, and A represents any estimated model property.
In general, you prefix the name of the estimated property with a d to get
the standard deviation estimate for that property. For example, to get the
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standard deviation value of the A polynomial in an estimated ARX model,
type model.da.

Note State-space models, estimated with free parameterization, do not
have well-defined standard deviations of the matrix elements. To display
matrix parameter uncertainties in this case, first transform the model to a
canonical parameterization by setting the ss model property to model.ss =
'canon'. For more information about free and canonical parameterizations,
see “State-Space Models” on page 5-67.

• Simulated output values for linear models with standard deviations using
the sim command.

Call the function sim with output arguments, where the second output
argument is the estimated standard deviation of each output value.
For example, type [ysim,ysimsd]=sim(model,data), where ysim is
the simulated output, ysimsd contains the standard deviations on the
simulated output, and data is the simulation data.
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Troubleshooting Models
During validation, you might find that your model output fits the validation
data poorly. You might also find some unexpected or undesirable model
characteristics.

This section provides tips for handling the following issues:

• “Model Order Is Too High or Too Low” on page 9-64

• “Nonlinearity Estimator Produces a Poor Fit” on page 9-65

• “Substantial Noise in the System” on page 9-66

• “Unstable Models” on page 9-66

• “Missing Input Variables” on page 9-67

• “Complicated Nonlinearities” on page 9-68

If the tips suggested in these sections do not help improve your models, then
a good model might not be possible for this data. For example, your data
might have poor signal-to-noise ratio, large and nonstationary disturbances,
or varying system properties.

Model Order Is Too High or Too Low
When the Model Output plot does not show a good fit, there is a good chance
that you need to try a different model order. System identification is largely
a trial-and-error process when selecting model structure and model order.
Ideally, you want the lowest-order model that adequately captures the system
dynamics.

System Identification Toolbox provides assistance in finding the approximate
model order, as described in “Estimating Model Orders and Input Delays ”
on page 5-49. Typically, you use the suggested order as a starting point to
estimate the lowest possible order with different model structures. After each
estimation, you monitor the Model Output and the Residual Analysis plots,
and then adjust your settings for the next estimation.

When a low-order model fits the validation data poorly, try estimating a
higher-order model to see if the fit improves. For example, if a Model Output
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plot shows that a fourth-order model gives poor results, try estimating an
eighth-order model. When a higher-order model improves the fit, you can
conclude that higher-order models might be required and linear models might
be sufficient.

You should use an independent data set to validate your models. If you use
the same data set to both estimate and validate a model, the fit always
improves as you increase model order, and you risk overfitting. However, if
you use an independent data set to validate your models, the fit eventually
deteriorates if your model orders are too high.

High-order models are more expensive to compute and result in greater
parameter uncertainty.

Nonlinearity Estimator Produces a Poor Fit
In the case of nonlinear ARX and Hammerstein-Wiener models, the Model
Output plot does not show a good fit when the nonlinearity estimator has
incorrect complexity.

You specify the complexity of piecewise-linear, wavelet, sigmoid, and
custom networks using the number of units (NumberOfUnits nonlinear
estimator property). A high number of units indicates a complex nonlinearity
estimator. In the case of neural networks, you specify the complexity using
the parameters of the network object. For more information, see the Neural
Network Toolbox documentation.

To select the appropriate complexity of the nonlinearity estimator, start
with a low complexity and validate the model output. Next, increate the
complexity and validate the model output again. The model fit degrades when
the nonlinearity estimator becomes too complex.

Note To see the model fit degrade when the nonlinearity estimator becomes
too complex, you must use an independent data set to validate the data that is
different from the estimation data set.

9-65



9 Plotting and Validating Models

Substantial Noise in the System
There are a couple of indications that you might have substantial noise in
your system and might need to use linear model structures that are better
equipped to model noise.

One indication of noise is when a state-space model is better than an ARX
model at reproducing the measured output; whereas the state-space structure
has sufficient flexibility to model noise, the ARX model structure is less able
to model noise because the A polynomial must account for both the system
dynamics and the noise. The following equation represents the ARX model
and shows that A couples the dynamics and the noise by appearing in the
denominator of both the dynamics term and the noise terms:

y
B
A

u
A

e= + 1

Another indication that a noise model is needed appears in residual analysis
plots when you see significant autocorrelation of residuals at nonzero lags.
For more information about residual analysis, see “Residual Analysis Plots”
on page 9-15.

To model noise more carefully, use the ARMAX or the Box-Jenkins model
structure, where the dynamics term and the noise term are modeled by
different polynomials.

Unstable Models
One of the most conclusive approaches to determining whether a linear model
is unstable is by examining the pole-zero plot of the model, which is described
in “Pole-Zero Plots” on page 9-43. The stability threshold for pole values
differs for discrete-time and continuous-time models, as follows:

• For stable continuous-time models, the real part of the pole is less than 0.

• For stable discrete-time models, the magnitude of the pole is less than 1.

In some cases, an unstable model is still a useful model. For example, your
system might be unstable without a controller, and you plan to use your
model for control design. In this case, you can import your unstable model
into Simulink or Control System Toolbox.
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One way to check if a nonlinear model is unstable is to plot the simulated
model output on top of the validation data. If the simulated output diverges
from measured output, the model is unstable. However, agreement between
model output and measured output does not guarantee stability.

In the case of linear models, if you believe that your system is stable, but your
model is unstable, then you can estimate the model again with a Focus setting
that guarantees stability. For example, set Focus to Stability to find the best
stable model. This setting might result in a reduced model quality. For more
information about Focus, see the Algorithm Properties reference pages.

A more advanced approach to achieving a stable model is by setting the
stability threshold property to allow a margin of error. The threshold model
property is accessed as a field in the algorithm structure:

• For continuous-time models, set the value of
model.algorithm.advanced.sstability. The model is
considered stable if the pole on the far right is to the left of sstability
threshold.

• For discrete-time models, set the value of
model.algorithm.advanced.zstability. The model is considered
stable if all poles inside the circle centered at the origin and with
a radius zstability.

For more information about Threshold fields for linear models, see the
Algorithm Properties reference pages.

Missing Input Variables
If the Model Output plot and Residual Analysis plot shows a poor fit and
you have already tried different structures and orders and modeled noise, it
might be that there are one or more missing inputs that have a significant
effect on the output.

Try including other measured signals in your input data, and then estimating
the models again.

Inputs need not be control signals. Any measurable signal can be considered
an input, including measurable disturbances.
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Complicated Nonlinearities
If the Model Output plot and Residual Analysis plot shows a poor fit, consider
if nonlinear effects are present in the system.

You can model the nonlinearities by performing a simple transformation
on the signals to make the problem linear in the new variables. For
example, if electrical power is the driving stimulus in a heating process and
temperature is the output, you can form a simple product of voltage and
current measurements.

If your problem is sufficiently complex and you do not have physical insight
into the problem, you might try fitting nonlinear black-box models. For more
information, see Chapter 6, “Estimating Nonlinear Black-Box Models”.
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Working with Models After Estimation
After you identify the simplest model that adequately describes your system,
you can simulate or predict model output. For more information, see
“Simulating and Predicting Model Output” on page 10-13.

For linear parametric models (idmodel objects), you can perform the following
postprocessing operations, as described in “Converting Linear Models” on
page 10-3:

• Transform between continuous-time and discrete-time representation.

• Transform between linear model representations, such as between
polynomial, state-space, and zero-pole representations.

• Extract numerical data from the model object, such as transfer function
polynomials, model zeros and poles, and state-space matrices.

idmodel is a superclass of linear model objects in System Identification
Toolbox and defines the shared properties and methods for idpoly, idproc,
idarx, idss, and idgrey objects.

If you have Control System Toolbox, you can import your linear plant model
for control-system design. For more information, see “Using Models with
Control System Toolbox” on page 10-20.

Finally, if you have Simulink, you can exchange data between System
Identification Toolbox and the Simulink simulation environment. For more
information, see “Using Models with Simulink” on page 10-26.

System Identification Toolbox models in the MATLAB workspace are
immediately available to other MathWorks products. However, if you used the
System Identification Tool GUI to estimate models, you must first export the
models to the MATLAB Workspace.

Tip To export a model from the GUI, drag the model icon to the To
Workspace rectangle. For more information about working with the GUI, see
Chapter 2, “Working with the System Identification Tool GUI”.
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Converting Linear Models
System Identification Toolbox lets you convert linear models from one
representation to another.

If you used the System Identification Tool GUI to estimate models, you must
export the models to the MATLAB Workspace before converting models.

This section discusses the following topics:

• “Transforming Between Discrete-Time and Continuous-Time
Representations” on page 10-3

• “Transforming Between Linear Model Representations” on page 10-8

• “Extracting Numerical Data from Linear Models” on page 10-9

• “Extracting Numerical Data for Dynamic Model Versus Noise Model” on
page 10-11

Transforming Between Discrete-Time and
Continuous-Time Representations
You can use c2d and d2c to transform any idmodel object between
continuous-time and discrete-time representations. This capability is useful,
for example, if you estimated a discrete-time linear model and require a
continuous-time model instead. d2d is useful is you want to change the
sampling interval of a discrete model. All of these operations change the
sampling interval, which is called resampling the model.

This section discusses the following topics:

• “Using c2d, d2c, and d2d Commands” on page 10-4

• “Specifying Intersample Behavior” on page 10-5

• “How d2c Handles Input Delays” on page 10-6

• “Effects on the Noise Model” on page 10-6
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Using c2d, d2c, and d2d Commands
The following table summarizes the commands for transforming between
continuous-time and discrete-time model representations. These commands
also transform the estimated model uncertainty, which corresponds to the
estimated covariance matrix of the parameters. For detailed information
about these commands, see the corresponding references pages.

Note c2d and d2d correctly approximate the transformation of the noise
model when the sampling interval T is small compared to the bandwidth
of the noise.

Command Description Usage Example

c2d Converts
continuous-time
models to discrete-time
models.

To transform a continuous-time
model mod_c to a discrete-time
form, use the following
command:

mod_d = c2d(mod_c,T)

where T is the sampling interval
of the discrete-time model.
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Command Description Usage Example

d2c Converts parametric
discrete-time models
to continuous-time
models.

To transform a discrete-time
model mod_d to a
continuous-time form, use
the following command:

mod_c = d2c(mod_d)

d2d Resample a linear
discrete-time
model and produce
an equivalent
discrete-time
model with a new
sampling interval.
You can use the
resampled model to
simulate or predict
output with a specified
time interval.

To resample a discrete-time
model mod_d1 to a discrete-time
form with a new sampling
interval Ts, use the following
command:

mod_d2 = d2d(mod_d1,Ts)

The following commands compare estimated model m and its continuous-time
counterpart mc on a Bode plot:

% Estimate discrete-time ARMAX model
% from the data
m = armax(data,[2 3 1 2]);
% Convert to continuous-time form
mc = d2c(m);
% Plot bode plot for both models
bode(m,mc)

Specifying Intersample Behavior
A sampled signal is characterized only by its values at the sampling instants.
However, when you apply a continuous-time input to a continuous-time
system, the output values at the sampling instants depend on the inputs at
the sampling instants and on the inputs between these points. Thus, the
InterSample data property describes how the algorithms should handle the
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input between samples. For example, you can specify the behavior between
the samples to be piecewise constant (zero-order hold, zoh) or linearly
interpolated between the samples (first order hold, foh). The transformation
formulas for c2d and d2c are affected by the intersample behavior of the input.

By default, c2d and d2c use the intersample behavior you assigned to the
estimation data. To override this setting during transformation, add an extra
argument in the syntax. For example:

% Set first-order hold intersample behavior
mod_d = c2d(mod_c,T,'foh')

How d2c Handles Input Delays
The discrete-to-continuous-time conversion d2c properly handles any
input delays in the discrete-time model, and stores this information in the
continuous-time model. An input delay is the delay in the response of the
output to the input signal.

The relationship between discrete-time and continuous-time delays depends
on the input intersample behavior. For example, a continuous-time system
without a delay shows a delay when sampled with a zero-order-hold input.

A delay in the discrete-time model that corresponds to an actual delay in the
continuous-time model is stored in the in the InputDelay property of the
resulting continuous-time model. Typically, this InputDelay is (nk-1)/Ts,
where nk is the delay of the discrete-time system and Ts is the sampling
interval.

Note Unlike for discrete-time models, the nk property of continuous-time
model is only used to flag when immediate response to step changes is
present; nk is not used to store input delays greater than or equal to 1. When
nk(i)=0, then there is an immediate response to a step change in the input
ith. When nk(i)=1, then there is no immediate response to the input.

Effects on the Noise Model
c2d, d2c, and d2d change the sampling interval of both the dynamic model and
the noise model. Resampling a model affects the variance of its noise model.
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A parametric noise model is a time-series model with the following
mathematical description:

y t H q e t

Ee

( ) ( ) ( )=

=2 λ

The noise spectrum is computed by the following discrete-time equation:

Φv
i TT H e( )ω λ ω= ( ) 2

where λ is the variance of the white noise e(t), and λT represents the spectral
density of e(t). Resampling the noise model preserves the spectral density λT
. The spectral density λT is invariant up to the Nyquist frequency. For more
information about spectrum normalization, see “Spectrum Normalization and
the Sampling Interval” on page 5-40.

d2d resampling of the noise model affects simulations with noise using
sim. If you resample a model to a faster sampling rate, simulating this
model results in higher noise level. This higher noise level results from the
underlying continuous-time model being subject to continuous-time white
noise disturbances, which have infinite, instantaneous variance. In this
case, the underlying continuous-time model is the unique representation for
discrete-time models. To maintain the same level of noise after interpolating

the noise signal, scale the noise spectrum by T
T

New

Old
, where Tnew is the new

sampling interval and Told is the original sampling interval. before applying
sim.

c2d and d2c transformations produce warnings when the continuous-time
disturbance model does not have the required white-noise component.
These warnings occur because the underlying state-space model, which
is formed and used by these transformations, is ill-defined. In this case,
modify the C-polynomial such that the degree of the monic C-polynomial
in continuous-time equals the sum of the degrees of the monic A- and
D-polynomials in continuous-time. For example:

length(C)-1 = (length(A)-1)+(length(D)-1)
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Transforming Between Linear Model Representations
You can transform linear models between state-space and polynomial
forms. You can also transform between frequency-response, state-space, and
polynomial forms.

For detailed information about each command, see the corresponding
reference pages.

Commands for Transforming Model Representations

Command Model Type to Convert Usage Example

idfrd Converts any single- or
multiple-output idmodel
object to idfrd model.
If you have Control System
Toolbox, this command
converts any LTI object.

To get frequency response of m at default
frequencies, use the following command:

m_f = idfrd(m)

To get frequency response at specific
frequencies, use the following command:

m_f = idfrd(m,f)

To get frequency response for a submodel
from input 2 to output 3, use the
following command:

m_f = idfrd(m(2,3))
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Commands for Transforming Model Representations (Continued)

Command Model Type to Convert Usage Example

idpoly Converts single-output
idmodel object to
ARMAX representation.
If you have Control System
Toolbox, this command
converts any single-output
LTI object except frd.

To get an ARMAX model from state-space
model m_ss, use the following command:

m_p = idpoly(m_ss)

idss Converts any single-
or multiple-output
idmodel object to
state-space representation.
If you have Control System
Toolbox, this command
converts any LTI object except
frd.

To get a state-space model from an ARX
model m_arx, use the following command:

m_ss = idss(m_arx)

Note The idss conversion produces warnings when the continuous-time
disturbance model does not have the required white-noise component.
These warnings occur because the underlying state-space model, which
is formed and used by these transformations, is ill-defined. In this case,
modify the C-polynomial such that the degree of the monic C-polynomial
in continuous-time equals the sum of the degrees of the monic A- and
D-polynomials in continuous-time. For example:

length(C)-1 = (length(A)-1)+(length(D)-1)

Extracting Numerical Data from Linear Models
System Identification Toolbox lets you extract the numerical parameter
values and uncertainties of model objects and store these values using
double data format. For example, you can extract state-space matrices for
state-space models, and extract polynomials for polynomial models. You can
operate on extracted model data as you would on any other MATLAB vectors
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and matrices. You can also pass these numerical values to Control System
Toolbox, for example, or Simulink blocks.

If you specified to estimate model uncertainty data, this information is stored
in the property Model.CovarianceMatrix in the estimated model. The
covariance matrix is used to compute uncertainties in parameter estimates,
model output plots, Bode plots, residual plots, and pole-zero plots.

The following table summarizes commands for extracting numerical data
from models. All of these commands have the following syntax form:

[G,dG] = command(model)

where G stores model parameters and dG stores standard deviation of
parameters or covariance.

Commands for Extracting Numerical Model Data

Command Description Syntax

arxdata Extracts ARX
parameters from
multioutput idarx
or single-output idpoly
objects that represent
ARX models.

[A,B,dA,dB] = arxdata(m)

freqresp Extracts
frequency-response
data from any idmodel
or idfrd object.

[H,w,CovH] = freqresp(m)

polydata Extracts polynomials
from any single-output
idmodel object.

[A,B,C,D,F,dA,dB,dC,dD,dF] = ...
polydata(m)

ssdata Extracts state-space
matrices from any
idmodel object.

[A,B,C,D,K,X0,...
dA,dB,dC,dD,dK,dX0] = ...

ssdata(Model)
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Commands for Extracting Numerical Model Data (Continued)

Command Description Syntax

tfdata Extracts numerator
and denominator
polynomials from any
idmodel object.

[Num,Den,dNum,dDen] = ...
tfdata(Model)

zpkdata Extracts zeros, poles,
and transfer function
gains from any idmodel
object.

[Z,P,K,covZ,covP,covK] = ...
zpkdata(m)

Extracting Numerical Data for Dynamic Model Versus
Noise Model
For linear models, the general symbolic model description is given by:

y Gu He= +

G is an operator that takes the measured inputs u to the outputs and captures
the system dynamics. H is an operator that describes the properties of the
additive output disturbance and takes the hypothetical (unmeasured) noise
source inputs e to the outputs, also called the noise model. When you estimate
a noise model, System Identification Toolbox includes one noise channel at the
input e for each output in your system.

The following table summarizes the results of ssdata, tfdata, and zpkdata
commands for extracting the numerical values of the dynamic model and
noise model separately. fcn represents ssdata, tfdata, and zpkdata, and
m is a model object. L represents the covariance matrix e, as defined in
“Subreferencing Measured and Noise Models” on page 1-38.

For information about subreferencing noise channels or treating noise
channels as measured input, see “Subreferencing Models” on page 1-36.

Note The syntax fcn(m('noise')) is equivalent to fcn(m('n')) .
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Syntax for Extracting Transfer-Function Data

Command Syntax

fcn(m) Returns the properties of G for ny outputs and nu inputs.

fcn(m('noise')) Returns the properties of H for ny outputs and ny inputs.

fcn(noisecnv(m)) Returns the properties of [G H] ny outputs and ny+nu
inputs.

fcn(noisecnv(m,'Norm')) Returns the properties of [G HL] ny outputs and ny+nu
inputs.

fcn(noisecnv(m('noise'),'Norm')) Returns the properties of HL ny outputs and ny inputs.

fcn(m) If m is a time-series model, returns the properties of H.

fcn(noisecnv(m,'Norm')) If m is a time-series model, returns the properties of HL.

Note The estimated covariance matrix NoiseVariance is uncertain. Thus,
the uncertainty of H differs from the uncertainty of HL.
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Simulating and Predicting Model Output
You can use System Identification Toolbox to simulate and predict model
output.

This section discusses the following topics:

• “Simulating Versus Predicting Output” on page 10-13

• “Simulation and Prediction Using the System Identification Tool GUI” on
page 10-14

• “Example – Using sim to Simulate Model Output with Noise” on page 10-14

• “Example – Using sim to Simulate a Continuous-Time State-Space Model”
on page 10-15

• “Predicting Model Output” on page 10-16

• “Specifying Initial States” on page 10-17

For information about simulating identified models in the Simulink
environment, see “Using Models with Simulink” on page 10-26.

Simulating Versus Predicting Output
Simulating a model means that you compute the response of a model to a
particular input. Simulation does not involve the noise model unless you
explicitly specify to compute the response to the noise source input. Predicting
future outputs of a model from previous data over a time horizon of k samples
or kTs time units—where Ts is the sampling interval—requires both past
inputs and past outputs.

The main difference between simulation and prediction is whether System
Identification Toolbox uses measured or computed previous outputs for
calculating the next output.

Simulating models uses only past input values to compute the output values.
If the model-output expression includes past outputs, System Identification
Toolbox computes the first output value using the initial conditions and the
inputs. Then, System Identification Toolbox feeds this computed output
into the difference equation or differential equation for calculating the next
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output value. Thus, no past outputs are used in the computation of output at
the current time.

Using a model for prediction is common in controls applications where you
want to predict output for a specific number of steps in advance. When you
use System Identification Toolbox to predict model output, the algorithm uses
both the measured and the calculated output data values in the difference
equation for computing the next output. The k-step-ahead-predicted values of
y(t) is computed from all available inputs u(s) and relevant previous outputs

y(s)—where s t k≤ −( ) . The argument s represents the data sample number.

To make sure that the model picks up important dynamic properties, let the
predicted time horizon kT be larger than the system time constants, where T
is the sampling interval. Prediction with k=∞ means that no previous inputs
are used in the computation and prediction matches simulation.

Note Output-error models, state-space models with K set to zero, polynomial
models with na=nc=nd=0, and nonlinear grey-box models do not use past
outputs. In these cases, the simulated and predicted outputs are the same
for any prediction horizon k.

Simulation and Prediction Using the System
Identification Tool GUI
To learn how to display simulated or predicted output using the System
Identification Tool GUI, see the description of the plot settings in “Plotting
Model Output Using the GUI” on page 9-10.

Example – Using sim to Simulate Model Output with
Noise
This example demonstrates how you can create input data and a model, and
then use the data and the model to simulate output data. In this case, you use
the following ARMAX model with Gaussian noise e:

y t y t y t
u t u t e t e

( ) . ( ) . ( )
( ) . ( ) ( ) (

− − + − =
− + − + −

1 5 1 0 7 2
1 0 5 2         tt e t− + −1 0 2 1) . ( )
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Create the ARMAX model and simulate output data with random binary
input u using the following commands:

% Create an ARMAX model
m_armax = idpoly([1 -1.5 0.7],[0 1 0.5],[1 -1 0.2]);

% Create a random binary input
u = idinput(400,'rbs',[0 0.3]);

% Simulate the output data
y = sim(m_armax,u,'noise');

Note The argument 'noise' specifies to include in the simulation the
Gaussian noise e present in the model. Omit this argument to simulate the
noise-free response to the input u, which is equivalent to setting e to zero.

Example – Using sim to Simulate a Continuous-Time
State-Space Model
This example demonstrates how to simulate a continuous-time state-space
model with random binary input u and a sampling interval of 0.1 second.

Consider the following state-space model:

&x x u e
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where e is Gaussian white noise with variance 7.
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Use the following commands to simulate the model:

% Set up the model matrices
A = [-1 1;-0.5 0]; B = [1; 0.5];
C = [1 0]; D = 0; K = [0.5;0.5];

% Create a continuous-time state-space model
% Ts = 0 indicates continuous time

model_ss = idss(A,B,C,D,K,'Ts',0,'NoiseVariance',7)
% Create a random binary input

u = idinput(400,'rbs',[0 0.3]);
% Create an iddata object with empty output

data = iddata([],u);
data.ts = 0.1

% Simulate the output using the model
y=sim(model_ss,data,'noise');

Note The argument 'noise' specifies to simulate with the Gaussian noise e
present in the model. Omit this argument to simulate the noise-free response
to the input u, which is equivalent to setting e to zero.

Predicting Model Output
You can use System Identification Toolbox to predict model output.

Use the following syntax to compute k-step-ahead prediction of the output
signal using model m:

yhat = predict(m,[y u],k)

The predicted value ˆ |y t t k−( ) is computed using information in u(s) up
to time s=t, and then information in y(s) up to time s=t-kT, where T is the
sampling interval.

The way information in past outputs is used depends on the disturbance
model of m. For example, because H = 1 in the output-error model, there is no
information in past outputs. In this case, predictions and simulations coincide.
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The following example demonstrates commands you can use to evaluate how
well a time-series model predicts future values. In this case, y is the original
series of monthly sales figures. The first half of the measured data is used to
estimate the time-series model, and then the second half of the data is used
to predict half a year ahead.

% Split time-series data into
% two halves
y1 = y(1:48),
y2 = y(49:96)
% Estimate a fourth-order autoregressive model
% using the first half of the data.
m = ar(y1,4)
% Predict time-series output
yhat = predict(m4,y2,6)
% Plot predicted output
plot(y2,yhat)

Specifying Initial States
The sim and predict functions require initial states to start the computations.

By default, simulating or predicting output for state-space models uses
the initial states stored in the X0 model property after estimation. For
multiexperiment state-space models, the stored initial states correspond to
the data in the last experiment. These stored initial states might not be
appropriate when you simulate or predict model output using new data.

If you prefer to use different initial states for state-space models, or if you
are working with other model types, you must specify the initial states for
simulation or prediction.

Use the following general syntax for specifying initial states for simulation
or prediction:

y=sim(model,data,'InitialState',S)
y=predict(model,data,'InitialState',S)

where S represents a vector of states.

The following topics discuss how to handle initial states:
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• “Set Initial States to Zero” on page 10-18

• “Set Initial States to Equilibrium Values” on page 10-18

• “Estimate Initial States from the Data” on page 10-18

Note The compare function automatically estimates the initial states from
the data and ensures consistency.

Set Initial States to Zero
If the system starts at rest, or if transient effects are not important, then
you can set the initial states to zero.

You can use the following shortcut syntax for setting initial states to zero:

y=sim(model,data,'InitialState','z')
y=predict(model,data,'InitialState','z')

Set Initial States to Equilibrium Values
If you have physical insight about the starting point of the system, create a
vector of specific initial states in the MATLAB Command Window.

Use the following syntax to specify initial states for simulation or prediction:

y=sim(model,data,'InitialState',S)
y=predict(model,data,'InitialState',S)

where S represents a vector of initial states.

If you are working with multiexperiment data, specify S as a matrix
containing as many columns as there are experiments.

Estimate Initial States from the Data
Simulation or prediction using data from a different experiment than the data
used to estimate the model requires the corresponding initial states.
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Estimate States for sim. To use sim with a data set that differs from the
data you used to estimate the model, first estimate the new initial states
Sest using pe:

[E,X0est]=pe(model,data)

Next, specify the estimated initial states Sest as an argument in sim. For
example:

y=sim(model,data,'InitialState',Sest)

When you simulate a multiexperiment model, use the pe function to estimate
initial states for the data from that specific experiment. For example, suppose
you estimate a three-state model M using a merged data set Z, which contains
data from five experiments—z1, z2, z3, z4, and z5:

Z = merge(z1,z2,z3,z4,z5);
M = n4sid(Z,3);

If you want to simulate using data from z2, you must estimate the initial
states for the second experiment Z(z2.u), as follows:

[E,X0est] = pe(M,getexp(Z,2))

where getexp(Z,2) gets the data in z2. The estimated states matrix Sest
contains one column of initial-state values for each experiment.

To simulate with these initial states, specify the estimated initial states Sest
as an argument in sim. For example:

y=sim(M,getexp(Z,2),'InitialState',Sest)

Estimate States for predict. Unlike for sim, you can specify to estimate the
initial states directly in the predict command.

To estimate the initial states that correspond to the data set you use for
prediction, use the following syntax:

y=predict(M,data,'InitialState','Estimate')
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Using Models with Control System Toolbox
System Identification Toolbox integrates with Control System Toolbox by
providing linear plant identification for control-system design. If you have
Control System Toolbox, you can use System Identification Toolbox to identify
a linear, time-invariant plant system, and then use Control System Toolbox
to design a controller for this plant.

Control System Toolbox also provides the LTI Viewer to extend System
Identification Toolbox functionality for linear model analysis.

This section discusses the following topics:

• “Using balred to Reduce Model Order” on page 10-21

• “Compensator Design Using Control System Toolbox” on page 10-21

• “Converting Models to LTI Objects” on page 10-22

• “Viewing Model Response in the LTI Viewer” on page 10-23

• “Combining Model Objects” on page 10-24

• “Example – Using System Identification Toolbox and Control System
Toolbox” on page 10-25

Only linear models are supported in Control System Toolbox. If you identified
a nonlinear plant model using System Identification Toolbox, you must
linearize it using linapp or lintan before you can work with this model in
Control System Toolbox.

Note You can only use System Identification Toolbox to linearize nonlinear
ARX (idnlarx) and Hammerstein-Wiener (idnlhw) models. Linearization of
nonlinear grey-box (idnlgrey) models is not supported.

For information about using Control System Toolbox, see the Control System
Toolbox documentation.
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Using balred to Reduce Model Order
In some cases, your identified model order might be higher than necessary
to capture the dynamics. If you have Control System Toolbox, you can use
balred to compute a state-spate model approximation with a reduced model
order for any idmodel object, including idarx, idpoly, idss, and idgrey.

For more information about using balred, see the corresponding reference
pages. To learn how you can reduce model order using pole-zero plots, see
“Reducing Model Order Using Pole-Zero Plots” on page 9-46.

Compensator Design Using Control System Toolbox
After you estimate a plant model in System Identification Toolbox, you can
use Control System Toolbox to design a controller for this plant.

System Identification Toolbox models in the MATLAB workspace are
immediately available to Control System Toolbox commands in the MATLAB
Command Window. However, if you used the System Identification Tool
GUI to estimate models, you must first export the models to the MATLAB
Workspace. To export a model from the GUI, drag the model icon to the To
Workspace rectangle.

Control System Toolbox provides both the SISO Design Tool GUI and
commands for working in the MATLAB Command Window. You can import
polynomial and state-space models directly into SISO Design Tool using the
following command:

sisotool(model('measured'))

where you use only the dynamic model and not the noise model. For more
information about subreferencing the dynamic or the noise model, see
“Subreferencing Measured and Noise Models” on page 1-38. To design
a controller using Control System Toolbox functions and methods in the
MATLAB Command Window, you must convert the plant model to an LTI
object. For more information, see “Converting Models to LTI Objects” on
page 10-22.
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Note The syntax sisotool(model('m')) is equivalent to
sisotool(model('measured')).

For more information about controller design using SISO Design Tool
and Control System Toolbox commands, see the Control System Toolbox
documentation.

Converting Models to LTI Objects
Control System Toolbox functions and methods operate on Control System
Toolbox LTI objects. To design a controller for a plant model you estimated
in System Identification Toolbox, you must first convert the plant model to
an LTI object.

You can convert linear polynomial, state-space, and grey-box model objects,
including idarx, idpoly, idproc, idss, or idgrey, to LTI model objects.

The following table summarizes the commands for transforming linear
state-space and polynomial models to LTI model object.

Commands for Converting Models to LTI Objects

Command Description Usage Example

frd Convert to
frequency-response
representation.

ss_sys = frd(model)

ss Convert to state-space
representation. ss_sys = ss(model)

tf Convert to
transfer-function form. tf_sys = tf(model)

zpk Convert to zero-pole form.
zpk_sys = zpk(model)

The following command transforms an idmodel object to an LTI state-space
object:
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% Extract the measured model
% and ignore the noise model
model = model('measured')
% Convert to LTI object
LTI_sys = idss(model)

The LTI object includes only the dynamic model and not the noise model,
which is estimated for every linear model in System Identification Toolbox.

Note To include noise channels in the LTI models, first use noisecnv to
convert the noise in the idmodel object to measured channels, and then
convert to an LTI object.

For more information about subreferencing the dynamic or the noise model,
see “Subreferencing Measured and Noise Models” on page 1-38.

Viewing Model Response in the LTI Viewer
If you have Control Systems Toolbox, you can plot models in the LTI Viewer
from either the System Identification Tool window or the MATLAB Command
Window.

This section discusses the following topics:

• “What Is the LTI Viewer?” on page 10-23

• “Displaying Identified Models in the LTI Viewer” on page 10-24

For more information about working with plots in the LTI Viewer, see the
Control System Toolbox documentation.

What Is the LTI Viewer?
The LTI Viewer is a graphical user interface for viewing and manipulating
the response plots of linear models and displays the following plot types:

• Step and impulse responses

• Bode and Nyquist plots
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• Nichols plots

• Singular values of the frequency response

• Pole/zero plots

• Response to a general input signal

• Unforced response starting from given initial states (only for state-space
models)

Note The LTI Viewer does not display model uncertainty.

Displaying Identified Models in the LTI Viewer
When Control System Toolbox is available, the System Identification Tool
GUI contains the To LTI Viewer rectangle. To plot models in the LTI Viewer,
drag and drop the corresponding icon to the To LTI Viewer rectangle in the
System Identification Tool window.

Alternatively, use the following syntax when working in the MATLAB
Command Window to view a model in the LTI Viewer:

view(model)

Combining Model Objects
If you have Control System Toolbox, you can combine linear model objects,
such as idarx, idgrey, idpoly, idproc, and idss model objects, similar to the
way you combine LTI objects.

For example, you can perform the following operations on estimated models:

• G1+G2

• G1*G2

• append(G1,G2)

• feedback(G1,G2)
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Note These operations lose covariance information.

Example – Using System Identification Toolbox and
Control System Toolbox
This example demonstrates how to use both System Identification Toolbox
commands and Control System Toolbox commands to create and plot models.

% Construct model using Control System Toolbox
m0 = drss(4,3,2)
% Convert model to an idss object
m0 = idss(m0,'NoiseVar',0.1*eye(3))
% Generate input data for simulating output
u = iddata([], idinput([800 2],'rbs'));
% Simulate model output using System Identification Toolbox
% with added noise
y = sim(m0,u,'noise')
% Form an input-output iddata object
Data = [y u];
% Estimate state-space model from the generated data
% using System Identification Toolbox command pem
m = pem(Data(1:400))
% Convert the model to a Control System Toolbox transfer function
tf(m)
% Plot model output for model m using System Identification Toolbox
compare(Data(401:800),m)
% Display identified model m in LTI Viewer
view(m)
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Using Models with Simulink
System Identification Toolbox provides the System Identification block for
exchanging information between System Identification Toolbox and the
Simulink environment.

You can use the Simulink library to perform the following tasks:

• Import estimated models into a Simulink model and simulate the model
with or without noise.

The model you import might be a subsystem or the main model. For
example, if you estimated a plant model using System Identification
Toolbox, you can import this plant into Simulink for controller design.

• Stream time-domain data sources (iddata objects) into a Simulink model.

• Save data from a simulation in Simulink as a System Identification Toolbox
data sink object (iddata objects).

• Estimate linear polynomial and state-space models during simulation for
single-output data.

Note Simulink supports linear polynomial, linear state-space, linear
grey-box, and nonlinear grey-box System Identification Toolbox model objects
(idarx, idpoly, idproc, idss, idgrey, and idnlgrey model objects). If
you estimated a nonlinear ARX or Hammerstein-Wiener model in System
Identification Toolbox, you must linearize this model using lintan or linapp
before importing it into Simulink.

This section discusses the following topics:

• “Opening the System Identification Library” on page 10-27

• “Working with System Identification Blocks” on page 10-27

• “Blocks for Importing Data and Models into Simulink” on page 10-27

• “Blocks for Model Estimation” on page 10-28

• “Example – Using Simulink to Simulate a Multiexperiment Model” on
page 10-29
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Opening the System Identification Library
To open the System Identification Library window, type the following
command at the MATLAB prompt:

slident

The System Identification Library contains blocks for exchanging information
between Simulink and System Identification Toolbox.

Working with System Identification Blocks
You can exchange data between Simulink and System Identification Toolbox
by adding System Identification blocks to your Simulink model and specifying
block parameters. For more information about creating and running Simulink
models, see the discussion on building a model in the Simulink User’s Guide.

To add a block from the System Identification Library, drag the block into the
model window. To specify block parameters, double-click the block icon to
open the Block Parameters dialog box.

You can get help on a specific block by right-clicking the block in the Library
window and selecting Help.

Blocks for Importing Data and Models into Simulink
System Identification blocks let you import and simulate estimated models in
Simulink, stream System Identification Toolbox data to Simulink, and save
data from a simulation as a System Identification Toolbox object.

After you add a block to the model, double-click the block to specify block
parameters. For an example of bringing data into a Simulink model, see
the tutorial on estimating process models in Getting Started with System
Identification Toolbox. To get help on a specific block, right-click the block in
the Library window, and select Help.
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Block Description

Iddata Sink Saves model input and output signals to the
MATLAB Workspace as an iddata object.

Iddata Source Imports iddata object from
the MATLAB Workspace.
Input and output ports of the block
correspond to input and output channels of the
data object. These inputs and outputs provide
signals to the next block in a Simulink model.

Idmodel Imports linear polynomial, state-space, and
grey-box models (idarx, idpoly, idproc, idss,
and idgrey model objects) into a Simulink model.

Idnlgrey Model Imports a nonlinear grey-box model (idnlgrey
model object) into a Simulink model.

Blocks for Model Estimation
System Identification blocks let you estimate linear polynomial and
state-space models during simulation. For information about AR, ARX,
ARMAX, Box-Jenkins, and Output-Error models, see “Black-Box Polynomial
Models” on page 5-42.

After you add a block to the model, double-click the block to specify block
parameters. To get help on a specific block, right-click the block in the Library
window, and select Help.

Block Description

AR Estimates AutoRegressive model as an
idpoly model object for time-series data,
which has one output and no input.
Use system output as the input to this block.
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Block Description

ARX Estimates an AutoRegressive model
with an eXternal input as an
idpoly object for input-output data.
Use system input and output as inputs to this
block.

ARMAX Estimates an AutoRegressive Moving
Average model with an eXternal input as
an idpoly object for input-output data.
Use system input and output as inputs to this
block.

BJ Estimates a Box-Jenkins model as an
idpoly object for input-output data.
Use system input and output as inputs to this
block.

OE Estimates an Output-Error model as
an idpoly object for input-output data.
Use system input and output as inputs to this
block.

PEM Uses a general prediction-error method
to estimate any single-input and single
output idpoly object, such as ARX, ARMAX,
Box-Jenkins, and Output-Error models.
Use system input and output as inputs to this
block.

Example – Using Simulink to Simulate a
Multiexperiment Model
This example demonstrates how to set initial states before simulating a
multiexperiment model. For multiexperiment data, Simulink uses the initial
states of the last experiment unless you specify otherwise.

Suppose you estimate a three-state model M using a merged data set Z, which
contains data from 5 experiments—z1, z2, z3, z4, and z5:

Z = merge(z1,z2,z3,z4,z5);
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M = n4sid(Z,3);

When a model uses several data sets, the initial-states property stores only
the estimated states corresponding to the last data set. In this example, M.X0
is a vector of length 3 (corresponding to the three states of the model). The
values of M.X0 are the estimated state values corresponding to z5.

The following procedure describes how to access the initial states that
correspond to z2 for the simulation, where z2 is a portion of the estimation
data Z.

To specify the settings of the idmodel block in Simulink for comparing the
measured output from experiment z2 with the simulated output:

1 Estimate the initial states using the second experiment as input, that is
Z(z2.u), as follows:

[E,X0est] = pe(M,getexp(Z,2))

In this case, the function getexp(Z,2) gets the data in z2.

2 In Simulink, open the Function Block Parameters dialog box for the
idmodel block.

3 In the idmodel variable field, type M to specify the estimated model.

4 In the Initial states field, type X0est to specify the estimated initial states.

5 Click OK.

Run the simulation to compare the measured output z2.y to the simulated
output.
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Functions — By Category

Data Manipulation (p. 11-3) Filter, resample, detrend, merge,
transform domain, identify delay
and feedback, construct input
signals, get and set data properties

Estimating Linear Parametric
Models (p. 11-4)

Estimate discrete- and
continuous-time linear parametric
models using time- and
frequency-domain data

Estimating Models Recursively
(p. 11-5)

Recursively estimate input-output
linear models, such as AR,
ARX, ARMAX, Box-Jenkins, and
Output-Error models

Estimating Nonlinear Models
(p. 11-6)

Estimate input-output,
black-box nonlinear models,
including nonlinear ARX and
Hammerstein-Wiener models

Estimating Nonparametric Models
(p. 11-8)

Estimate nonparametric models
using correlation and spectral
analysis, compute impulse and
step response, estimate empirical
transfer functions

General (p. 11-9) Query and set model properties, get
advice on data sets and models

Graphical User Interface (p. 11-9) Open and set preferences for System
Identification Toolbox GUI
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Model Analysis (p. 11-10) Compare model output, plot model
impulse, step, and frequency
response, plot pole-zero maps, get
advice on estimated models

Model Constructors (p. 11-11) Create continuous and discrete
state-space, frequency-response,
and input-output transfer-function
models

Model Conversion (p. 11-12) Convert between continuous-time
and discrete-time models, linearize
nonlinear black-box models, extract
numerical information from linear
models, convert between System
Identification Toolbox and LTI
objects, perform continuous- or
discrete-time conversions, reduce
model order

Model Manipulation (p. 11-13) Select model order, merge estimated
models, query and set model
properties

Model Structure Selection (p. 11-14) Select model structure and order
based on loss function, AIC, and
MDL criteria

Model Uncertainty (p. 11-14) Plot models with confidence regions,
compute standard deviations

Model Validation (p. 11-15) Compute prediction errors, loss
function, and simulate linear models
with confidence regions

Simulation and Prediction (p. 11-16) Simulate and predict model output,
compute prediction errors, generate
input data
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Data Manipulation
advice Advice about data or estimated

linear polynomial and state-space
models

delayest Estimate time delay (dead time)
from data

detrend Remove trends from output-input
data

diff Difference signals in iddata objects

fcat Concatenate frequency-domain
signals in idfrd and iddata objects

feedback Identify possible feedback in iddata
data

fft Transform iddata object to
frequency domain

fselect Select frequencies from idfrd object

get Query properties of data and model
objects

getexp Retrieve experiment(s) from
multiple-experiment iddata objects

iddata Class for storing time-domain and
frequency-domain data

idfilt Filter data using user-defined
passbands, general filters, or
Butterworth filters

idfrd Class for storing frequency-response
or spectral-analysis data

idresamp Resample iddata object by
decimation and interpolation

ifft Transform iddata objects from
frequency to time domain
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isreal Determine whether model or data
set contains real parameters or data

merge (iddata) Merge data sets into one iddata
object

misdata Reconstruct missing input and
output data

nkshift Shift data sequences

nuderst Set step size for numerical
differentiation

pexcit Level of excitation of input signals

plot Plot iddata or model objects

realdata Determine whether iddata is based
on real-valued signals

resample Resample data by interpolation and
decimation

set Set properties of data and model
objects

Estimating Linear Parametric Models
ar Estimate parameters of AR model

for scalar time series returning
idpoly object

armax Estimate parameters of ARMAX
or ARMA model returning idpoly
object

arx Estimate parameters of ARX or AR
model using least squares returning
idpoly or idarx object

bj Estimate parameters of Box-Jenkins
model returning idpoly object
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iv4 Estimate ARX model using
four-stage instrumental variable
method returning idpoly or idarx
object

ivar Estimate AR model using
instrumental variable method
returning idpoly object

ivx Estimate parameters of ARX
model using instrumental variable
method with arbitrary instruments
returning idpoly or idarx object

n4sid Estimate state-space models using
subspace method returning idss
object

oe Estimate parameters of output-error
model returning idpoly object

pem Estimate model parameters
using iterative prediction-error
minimization method

Estimating Models Recursively
rarmax Estimate recursively parameters of

ARMAX or ARMA models

rarx Estimate recursively parameters of
ARX or AR models

rbj Estimate recursively parameters of
Box-Jenkins models

roe Estimate recursively output-error
models (IIR-filters)
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rpem Estimate general input-output
models using recursive
prediction-error minimization
method

rplr Estimate general input-output
models using recursive pseudolinear
regression method

segment Segment data and estimate models
for each segment

Estimating Nonlinear Models
addreg Add custom regressors to idnalrx

model

customnet Store nonlinearity estimator
with user-defined unit function
for nonlinear ARX and
Hammerstein-Wiener models

customreg Store custom regressor for nonlinear
ARX models

deadzone Store dead-zone nonlinearity
estimator for Hammerstein-Wiener
models

evaluate Value of nonlinearity estimator at
given input

getinit Values of idnlgrey model initial
states

getpar Parameter values and properties of
idnlgrey model parameters

getreg Returns names of standard or
custom regressors in nonlinear ARX
model

11-6



Estimating Nonlinear Models

idnlgrey Class for storing nonlinear grey-box
models

linear Specify to estimate nonlinear ARX
model that is linear in (nonlinear)
custom regressors

neuralnet Store neural network object created
in Neural Network Toolbox for
estimating nonlinear ARX and
Hammerstein-Wiener models

nlarx Estimate nonlinear ARX models

nlhw Estimate Hammerstein-Wiener
models

pem Estimate model parameters
using iterative prediction-error
minimization method

polyreg Generate custom regressors by
computing powers and products of
standard regressors

pwlinear Store piecewise-linear nonlinear
estimator for Hammerstein-Wiener
models

saturation Store saturation nonlinearity
estimator for Hammerstein-Wiener
models

setinit Set initial states of idnlgrey model
object

setpar Set initial parameter values of
idnlgrey model object

sigmoidnet Store sigmoid network nonlinearity
estimator for nonlinear ARX and
Hammerstein-Wiener models

treepartition Store binary-tree nonlinearity
estimator for nonlinear ARX models
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unitgain Specify absence of nonlinearities for
specific input or output channels in
Hammerstein-Wiener models

wavenet Store wavelet network nonlinearity
estimator for nonlinear ARX and
Hammerstein-Wiener models

Estimating Nonparametric Models
covf Estimate time-series covariance

functions

cra Estimate impulse response using
prewhitened-based correlation
analysis

delayest Estimate time delay (dead time)
from data

etfe Estimate empirical transfer
functions and periodograms
returning idfrd object

feedback Identify possible feedback in iddata
data

impulse Plot impulse response with
confidence interval

pexcit Level of excitation of input signals

spa Estimate frequency response and
spectrum using spectral analysis
returning idfrd object
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spafdr Estimate frequency response and
spectrum using spectral analysis
with frequency-dependent resolution
returning idfrd object

step Plot step response with confidence
interval

General
advice Advice about data or estimated

linear polynomial and state-space
models

get Query properties of data and model
objects

set Set properties of data and model
objects

setpname Set mnemonic parameter names for
black-box model structures

size Dimensions of iddata, idmodel, and
idfrd objects

timestamp Return date and time when object
was created or last modified

Graphical User Interface
ident Open System Identification Tool GUI

midprefs Set directory for storing
idprefs.mat containing GUI
startup information
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Model Analysis
advice Advice about data or estimated

linear polynomial and state-space
models

bode Plot Bode diagram of frequency
response with confidence interval

compare Compare model output and
measured output

ffplot Plot frequency response and spectra

impulse Plot impulse response with
confidence interval

isreal Determine whether model or data
set contains real parameters or data

nyquist Plot Nyquist curve of frequency
response with confidence interval

plot Plot iddata or model objects

present Display model information, including
estimated uncertainty

pzmap Plot zeros and poles with confidence
interval

step Plot step response with confidence
interval

view Plot model characteristics using LTI
viewer in Control System Toolbox
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Model Constructors
idarx Class for storing multioutput ARX

polynomials and estimated impulse-
and step-response

idfrd Class for storing frequency-response
or spectral-analysis data

idgrey Class for storing linear grey-box
models

idmodel Superclass for linear models

idnlarx Class for storing nonlinear ARX
models

idnlgrey Class for storing nonlinear grey-box
models

idnlhw Class for storing
Hammerstein-Wiener input-output
models

idnlmodel Superclass for nonlinear models

idpoly Class for storing linear polynomial
input-output models

idproc Class for storing low-order,
continuous-time process models

idss Class for storing linear state-space
models with known and unknown
parameters
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Model Conversion
arxdata ARX parameters with variance

information from idarx models

balred Reduce model order (requires
Control System Toolbox)

c2d Convert model from continuous to
discrete time

d2c Convert model from discrete to
continuous time

frd Convert idfrd objects to
frequency-response LTI models
of Control System Toolbox

freqresp Compute frequency function for
model

fselect Select frequencies from idfrd object

idfrd Class for storing frequency-response
or spectral-analysis data

linapp Linear approximation of nonlinear
ARX and Hammerstein-Wiener
models for given input

lintan Tangent linearization of
Hammerstein-Wiener models
about operating point

noisecnv Convert idmodel with noise
channels to model with only
measured channels

polydata Convert model to input-output
polynomials

ss Convert idmodel objects of System
Identification Toolbox to LTI models
of Control System Toolbox

ssdata Convert model to state-space form
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Model Manipulation

tf Convert idmodel objects of
System Identification Toolbox to
transfer-function LTI models of
Control System Toolbox

tfdata Convert model to transfer-function
form

zpk Convert idmodel objects of System
Identification Toolbox to state-space
LTI models of Control System
Toolbox

zpkdata Compute zeros, poles, and gains of
transfer-function models

Model Manipulation
get Query properties of data and model

objects

init Set or randomize initial parameter
values

merge Merge estimated idmodel models

selstruc Select model order (structure)

set Set properties of data and model
objects

setstruc Set matrix structure for idss objects
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Model Structure Selection
arxstruc Compute and compare loss functions

for single-output ARX models

ivstruc Compute loss functions for sets of
output-error model structures

n4sid Estimate state-space models using
subspace method returning idss
object

selstruc Select model order (structure)

struc Generate model structure matrices

Model Uncertainty
arxdata ARX parameters with variance

information from idarx models

bode Plot Bode diagram of frequency
response with confidence interval

impulse Plot impulse response with
confidence interval

nyquist Plot Nyquist curve of frequency
response with confidence interval

polydata Convert model to input-output
polynomials

pzmap Plot zeros and poles with confidence
interval

sim Simulate linear models with
confidence interval

simsd Simulate models with uncertainty
using Monte Carlo method

ssdata Convert model to state-space form
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Model Validation

step Plot step response with confidence
interval

tfdata Convert model to transfer-function
form

zpkdata Compute zeros, poles, and gains of
transfer-function models

Model Validation
aic Akaike Information Criterion for

estimated model

arxstruc Compute and compare loss functions
for single-output ARX models

compare Compare model output and
measured output

fpe Akaike Final Prediction Error for
estimated model

pe Compute prediction errors associated
with model and data set

predict Predict output k steps ahead

resid Compute and test model residuals
(prediction errors)

selstruc Select model order (structure)

sim Simulate linear models with
confidence interval

11-15



11 Functions — By Category

Simulation and Prediction
idinput Generate input signals

idmdlsim Simulate idmodel objects in
Simulink

pe Compute prediction errors associated
with model and data set

predict Predict output k steps ahead

sim Simulate linear models with
confidence interval
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addreg

Purpose Add custom regressors to idnalrx model

Syntax addreg(model,R)
addreg(model,R,I)
addreg(model,R1,I1,R2,I2,Rn,In,)

Arguments model
Name of the idnlarx model object.

R
For single-output models, R can be an array of customreg
objects. R can also be a cell array of strings, where is string is an
expression in terms of input and output variables.

For multiple-output models with ny outputs, R can be a 1–by-ny
cell array containing names of customreg objects or strings of
expressions.

I
Scalar integer or vector of integers. Each integer specifies the
index of a model output channel.

Description addreg(model,R) adds one or more custom regressors R to nonlinear
ARX model model. For multiple-output systems, each element of the R
cell array is added to the corresponding output channel of the model.

addreg(model,R,I) is used for multiple-output models and adds one or
more custom regressors R to specific output channels.

addreg(model,R1,I1,R2,I2,Rn,In,) is used for multiple-output
models and specifies the regressor-channel pairs.

Examples The following example shows how to add regressors to a nonlinear ARX
model using a cell array of strings. u1 and y2 are input and output
variables, respectively:

load iddata1
m1=nlarx(z1,[4 2 1],'wave','nlr',[1:3]);
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% Add regressors using cell array of strings
m2=addreg(m1,{'y1(t-2^2)';'u1(t)*y1(t-7)'})

Alternatively, you can use the customreg constructor to create
regressors, and then add them to the model:

r1=customreg(@(x,y)x*y,{'y1','u1'},[2 3])
r2=customreg(@(x,y)x+y,{'y1','u1'},[2 3])
m2=addreg(m1,[r1 r2]);

See Also customreg

getreg

nlarx

polyreg
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advice

Purpose Advice about data or estimated linear polynomial and state-space
models

Syntax advice(model)
advice(data)

Arguments model
Name of the idarx, idgrey, idpoly, idproc, or idss model
object. These model objects belong to the idmodel abstract class,
representing linear polynomial and state-space models.

data
Name of the iddata object.

Description advice(model) displays the following information about the estimated
model in the MATLAB Command Window:

• Does the model capture essential dynamics of the system and the
disturbance characteristics?

• Is the model order higher than necessary?

• Is there potential output feedback in the validation data?

• Would a nonlinear ARX model perform better than a linear ARX
model?

advice(data) displays the following information about the data in
the MATLAB Command Window:

• What are the excitation levels of the signals and how does this affects
the model orders? See also pexcit.

• Does it make sense to remove constant offsets and linear trends from
the data? See also detrend.

• Is there an indication of output feedback in the data? See also
feedback.
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See Also detrend

feedback

iddata

pexcit
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aic

Purpose Akaike Information Criterion for estimated model

Syntax am = aic(model)
am = aic(model1,model2,...)

Arguments model
Name of an idarx, idgrey, idpoly, idproc, or idss model object.
These model objects belong to the idmodel abstract class.

Description am = aic(model) returns a scalar value of the Akaike’s Information
Criterion (AIC) for the estimated model.

am = aic(model1,model2,...) returns a row vector containing AIC
values for the estimated models model1,model2,....
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Remarks Use Akaike Information Criterion (AIC) to perform a relative
comparison of models with different structures. Smaller value of AIC
indicates a better model.

AIC is defined by the following equation:

AIC V
d

N
= +log

2

where V is the loss function, d is the number of estimated parameters,
and N is the number of values in the estimation data set.

For d N<<

AIC V
d

N
= + +⎛

⎝⎜
⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟log 1

2

The loss function V is

V t tN N N
TN

= ( ) ( )( )⎛

⎝
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⎟⎟∑det , ,1

1
ε θ ε θ

where θ̂N represents the estimated parameters.
AIC is formally defined as the negative log-likelihood functionΛ ,
evaluated at the estimated parameters, plus the number of estimated
parameters. You can derive AIC from this definition, as follows:

If the disturbance source is Gaussian with the covariance matrix Λ , the
logarithm of the likelihood function is

L t t constT
N

N( , ) ( , ) ( , ) log detθ ε θ ε θΛ Λ Λ= − − ( ) +∑ −1
2

1

1
2
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Maximizing this analytically with respect to Λ , and then maximizing
the result with respect to θ , gives

L const VNp N( , ) log( )θ Λ = + +2 2

where p is the number of outputs.

To obtain the AIC expression from the last result, remove the constants
and normalize.

References Ljung, L. System Identification: Theory for the User, Upper Saddle
River, NJ, Prentice-Hal PTR, 1999. See sections about the statistical
framework for parameter estimation and maximum likelihood method
and comparing model structures.

See Also EstimationInfo

fpe
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Algorithm Properties

Purpose Algorithm properties affecting estimation process for linear models

Syntax idprops algorithm
m.algorithm.PropertyName='PropertyValue'

Description Algorithm is a property of the idmodel abstract class that specifies the
estimation algorithm. The idmodel subclasses are linear models that
you actually work with in System Identification Toolbox, such as idarx,
idss, idpoly, idproc, and idgrey, inherit this property.

Property names are not case sensitive. When you type a property
name, you only need to enter enough characters to uniquely identify
the property.

For a model m, you can retrieve the fields of this property using the get
method. For example, get(m,'MaxIter').

You can also set the SearchDirection property of a model using dot
notation. For example, m.SearchDirection = 'gn'.

When you create a new model by refining an existing model m, the
algorithm properties of m are inherited by the new model.

Note You can estimate a model with specific algorithm settings and
define a structure variable to store the algorithm values. For example:

model = n4sid(data,order)
myalg = model.Algorithm;
myalg.Focus='Simulation';
m = pem(data,model,'alg',myalg)

The fields of the Algorithm structure are as follows:
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Properties for All Estimation Methods

• Focus: This property defines how the errors e between the measured
and the modeled outputs are weighed at specific frequencies during

the minimization of the loss function V ei
i

i= ∑λ 2 . Higher weighting
at specific frequencies emphasizes the requirement for a good fit at
these frequencies. Focus can have the following values:

- 'Prediction': (Default) Automatically calculates the weighting
function as a product of the input spectrum and the inverse of
the noise model. This minimizes the one-step-ahead prediction,
which typically favors fitting small time intervals (high frequency
range). From a statistical-variance point of view, this is the
optimal weighting function. However, this method neglects the
approximation aspects (bias) of the fit. Might not result in a stable
model. Use 'Stability' when you want to ensure a stable model.

- 'Simulation': Estimates the model using the frequency
weighting of the transfer function that is given by the input
spectrum. Typically, this method favors the frequency range where
the input spectrum has the most power. In other words, the
resulting model will produce good simulations for inputs that have
the same spectra as used for estimation. For models that have no
disturbance model, there is no difference between 'Simulation'

and 'Prediction'. In this case, y Gu He= + with H=1, which
is equivalent to A=C=D=1 for idpoly models and K = 0 for idss
models.

For models that have a disturbance model, G is first estimated
with H=1, and then H is estimated using a prediction-error method

with a fixed estimated transfer function Ĝ . This guarantees a
stable transfer function G.

- 'Stability': This weighting is the same as for 'Prediction',
but the model is forced to be stable. Use only when you know the
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system is stable. In some cases, forcing the model to be stable
can result in a bad model.

- Enter a row vector or a matrix containing frequency values that
define desired passbands. For example:

[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]

where wl and wh represent upper and lower limits of a passband.
For a matrix with several rows defining frequency passbands, the
algorithm uses union of frequency ranges to define the estimation
passband.

- Enter any SISO linear filter in any of the following ways:

A single-input-single-output (SISO) idmodel object.

An ss, tf, or zpk model from Control System Toolbox.

Using the format {A,B,C,D}, which specifies the state-space
matrices of the filter.

Using the format {numerator, denominator} , which specifies
the numerator and denominator of the filter transfer function

This calculates the weighting function as a product of the filter and
the input spectrum to estimate the transfer function from input to
output, G. To obtain a good model fit for a specific frequency range,
you must choose the filter with a passband in this range. After
estimating G, the algorithm computes the disturbance model using
a prediction-error method and keeping the estimated transfer
function fixed (similar to the 'Simulation' case). For a model
that has no disturbance model, the estimation result is the same if
you first prefilter the data using idfilt.

- For frequency-domain data only, enter a column vector of weights
for 'Focus'. This vector must have the same size as length of the
frequency vector of the data set, Data.Frequency. Each input and
output response in the data is multiplied by the corresponding
weight at that frequency.
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• MaxSize: A positive integer, specified such that the input-output
data is split into segments where each contains fewer than
MaxSize elements. Setting MaxSize can improve computational
performance. The default value of MaxSize is 'Auto', which uses the
M-file idmsize to set the value. You can edit this file to optimize
computational speed on a particular computer. MaxSize does not
affect the numerical properties of the estimate except when you use
InitialState = 'backcast' for frequency-domain data. In this
case, the frequency ranges where backcasting takes place might
depend on MaxSize and affects estimates.

• FixedParameter: Vector of integers containing the indices of
parameters that are not estimated and remain fixed at nominal or
initial values. Parameter indices refer to their position in the list,
stored in the property 'ParameterVector'. You can also specify
parameter names as values from the property 'PName'. To specify
fixed parameters using parameter names, enter Fixedparameter as
a cell array of strings. For example, to fix parameters with names 'a'
and 'b', type m.FixedParameter = {'a','b','c'}. Strings can
contain wildcards, such as '*' to specify the automatic completion of
a string, or '?' to represent an arbitrary character. For example, to
fix three parameters in a disturbance model that start with 'k', such
as 'k1', 'k2','k3', use FixedParameter = {'k*'}. For structured
state-space models, you can fix and free parameters by specifying
structure matrices, such as As and Bs (see idss).

Note By default, the property 'PName' is empty. Use setpname to
assign default parameter names. For example, m = setpname(m).

Properties for n4sid, Estimating State-Space Models

Note These properties also apply to pem, used for estimating black-box
state-space models that are initialized by the n4sid estimate.
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• N4Weight: Calculates the weighting matrices used in the
singular-value decomposition step of the algorithm and has three
possible values:

- 'Auto': (Default) Automatically chooses between 'MOESP' and
'CVA'

- 'MOESP': Uses the MOESP algorithm by Verhaegen.

- 'CVA': Uses the canonical variable algorithm by Larimore.

For more information about setting this property, see the n4sid
reference page.

• N4Horizon: Determines the forward and backward prediction
horizons used by the algorithm. Enter a row vector with three
elements: N4Horizon=[r sy su], where r is the maximum forward
prediction horizon; that is, the algorithm uses up to r step-ahead
predictors. sy is the number of past outputs, and su is the number
of past inputs used for predictions. For an exact definition of these
integers, see the section about subspace methods in [2], where they
are called r, s1, and s2. These numbers can have a substantial
influence on the quality of the resulting model and there are no
simple rules for choosing them. Making 'N4Horizon' a k-by-3 matrix
means that the algorithm tries each row of 'N4Horizon' and selects
the value that gives the best (prediction) fit to the data. Choosing
the best row is not available when you also specify to select the best
model order. When you specify one column in 'N4Horizon', the
interpretation is r=sy=su. The default choice is 'N4Horizon' =
'Auto', which uses an Akaike Information Criterion (AIC) for the
selection of sy and su.

Properties for Iterative Estimation Methods armax, bj, oe,
and pem

• Trace: This property specifies what information displays in the
MATLAB Command Window about the iterative search during
estimation.

- 'Trace'='Off': Displays no information.
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- 'Trace'='On': Displays the loss-function values for each iteration.

- 'Trace'='Full': Displays the same information as ’On’ and also
include the current parameter values and the search direction
(except when the Advanced SSParameterization model property
is set to 'Free' for idss models and the list of parameters can
change between iterations).

• LimitError: Specifies when to adjust the weight of large errors
from quadratic to linear. Errors larger than LimitError times the
estimated standard deviation have a linear weight in the criteria.
The default value of LimitError is 1.6. LimitError = 0 disables
the robustification and leads to a purely quadratic criterion. The
standard deviation is estimated robustly as the median of the
absolute deviations from the median and divided by 0.7. (See the
section about choosing a robust norm in [2].) When estimating with
frequency-domain data, LimitError is set to zero.

• MaxIter: Specifies the maximum number of iterations during
loss-function minimization. The iterations stop when MaxIter
is reached or another stopping criterion is satisfied, such as
the Tolerance. The default value of MaxIter is 20. Setting
MaxIter = 0 returns the result of the startup procedure. Use
EstimationInfo.Iterations to get the actual number of iterations
during an estimation.

• Tolerance: Specifies the minimum percentage difference (divided
by 100) between the current value of the loss function and its
expected improvement after the next iteration: When the percentage
of expected improvement is less than Tolerance, the iterations
are stopped. Default value is 0.01. The estimate of the expected
loss-function improvement at the next iteration is made based on the
Gauss-Newton vector computed for the current parameter value.

• SearchDirection: The direction of a line search for finding a lower
value of the criterion function. It has the following values:

- 'gn': The Gauss-Newton direction (inverse of the Hessian times
the gradient direction). If there is no improvement along this
direction, the gradient direction is also tried.
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- 'gns': A regularized version of the Gauss-Newton direction.
Eigenvalues less than GnsPinvTol of the Hessian are neglected
and the Gauss-Newton direction is computed in the remaining
subspace.

- 'gna': An adaptive version of gns, suggested by Wills and Ninness
(IFAC World congress, Prague 2005). Eigenvalues less than
gamma*max(sv) of the Hessian are neglected , where sv are the
singular values of the Hessian. The Gauss-Newton direction is
computed in the remaining subspace. gamma has the initial value
InitGnaTol (see below) and is increased by the factor LmStep each
time the search fails to find a lower value of the criterion in less
than 5 bisections. It is decreased by the factor 2LmStep each time a
search is successful without any bisections.

- 'lm': Uses the Levenberg-Marquardt method. This means that
the next parameter value is -pinv(H+d*I)*grad from the previous
one, where H is the Hessian, I is the identity matrix, and grad is
the gradient. d is a number that is increased until a lower value
of the criterion is found.

- 'Auto': A choice among the above is made in the algorithm. This
is the default choice.

• Advanced: This is a structure that specifies advanced algorithm
options and has the following fields:

- Search: Uses the following fields to specify options for the iterative
search:

a GnsPinvTol: Tolerance for the pseudoinverse, used to compute
the gns direction. See SearchDirection for description of gns.
Default is 10^-9.

b InitGnaTol: The initial value of gamma in the gna search algorithm.
See SearchDirection for description of gna. Default is 10^-4.

c LmStep: The size of the Levenberg-Marquardt step. The next
value of the search-direction length d in the Levenberg-Marquardt
method is LmStep times the previous one. Default is 2.
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d StepReduction: For search directions other than the
Levenberg-Marquardt direction, the step is reduced by the factor
StepReduction after each iteration. Default is 2.

e MaxBisection: The maximum number of bisections used by the
line search along the search direction. Default is 25.

f LmStartValue: The starting value of search-direction length d in
the Levenberg-Marquardt method. Default is 0.001.

g RelImprovement: The iterations are stopped if the relative
improvement of the criterion is less than RelImprovement. Default
is RelImprovement = 0. This property is different from Tolerance
in that it uses the actual improvement of the loss function, as
opposed to the expected improvement.

- Threshold: Contains fields with thresholds for several tests:

a Sstability: Specifies the location of the rightmost pole to test the
stability of continuous-time models. A model is considered stable
when its rightmost pole is to the left of Sstability. Default is 0.

b Zstability: Specifies the maximum distance of all poles from
the origin to test stability of discrete-time models. A model is
considered stable if all poles are within the distance Zstability
from the origin. Default is 1.01.

- AutoInitialState: Specifies when to automatically estimate the
initial state. When InitialState = 'Auto', the initial state is
estimated when the ratio of the prediction-error norm with a zero
initial state to the norm with an estimated initial state exceeds
AutoInitialState. Default is 1.2.

References [1] Dennis, J.E., Jr., and R.B. Schnabel, Numerical Methods for
Unconstrained Optimization and Nonlinear Equations, Prentice Hall,
Englewood Cliffs, N.J., 1983. See about iterative minimization.

[2] Ljung, L. System Identification: Theory for the User, Upper Saddle
River, NJ, Prentice-Hal PTR, 1999. See chapter about computing the
estimate.
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See Also armax

bj

EstimationInfo

idpoly

idss

n4sid

oe

pem
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Purpose Estimate parameters of AR model for scalar time series returning
idpoly object

Syntax m = ar(y,n)
[m,refl] = ar(y,n,approach,window)
[m,refl] = ar(y,n,approach,window,'P1',V1,...,'PN',VN)

Arguments y
iddata object that contains the time-series data (one output
channel).

n
Scalar that specifies the order of the model you want to estimate
(the number of A parameters in the AR model).

approach
Lets you choose the algorithm for computing the least squares AR
model from the following options:

• 'burg': Burg’s lattice-based method. Solves the lattice filter
equations using the harmonic mean of forward and backward
squared prediction errors.

• 'fb': (Default) Forward-backward approach. Minimizes the
sum of a least- squares criterion for a forward model, and the
analogous criterion for a time-reversed model.

• 'gl': Geometric lattice approach. Similar to Burg’s method,
but uses the geometric mean instead of the harmonic mean
during minimization.

• 'ls': Least-squares approach. Minimizes the standard sum of
squared forward-prediction errors.

• 'yw': Yule-Walker approach. Solves the Yule-Walker equations,
formed from sample covariances.

window
Lets you specify how to use information about the data outside the
measured time interval (past and future values). The following
windowing options are available:
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• 'now': (Default) No windowing. This value is the default except
when the approach argument is 'yw'. Only measured data is
used to form regression vectors. The summation in the criteria
starts at the sample index equal to n+1.

• 'pow': Postwindowing. Missing end values are replaced with
zeros and the summation is extended to time N+n (N is the
number of observations).

• 'ppw': Pre- and postwindowing. Used in the Yule-Walker
approach.

• 'prw': Prewindowing. Missing past values are replaced with
zeros so that the summation in the criteria can start at time
equal to zero.

'P1',V1,...,'PN',VN
Pairs of property names and property values can include any of
the following:

Property Name Property Value Description

'Covariance' • 'None'
Suppresses the
calculation of
the covariance
matrix.

• []

Empty.

• Square matrix
containing
covariance
values of size
equal to the
length of the
parameter vector

Specifies
calculation of
uncertainties
in parameter
estimates.
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Property Name Property Value Description

'MaxSize' Integer See Algorithm
Properties for the
description.

'Ts' Real positive
number

Sets the sampling
time and overrides
the sampling time
of y.

Description
Note Use for scalar time series only. For multivariate data, use arx.

m = ar(y,n) returns an idpoly model m.

[m,refl] = ar(y,n,approach,window) returns an idpoly model m
and the variable refl. For the two lattice-based approaches, 'burg'
and 'gl', refl stores the reflection coefficients in the first row, and the
corresponding loss function values in the second row. The first column
of refl is the zeroth-order model, and the (2,1) element of refl is
the norm of the time series itself.

[m,refl] = ar(y,n,approach,window,'P1',V1,...,'PN',VN)
returns an idpoly model m and the variable refl using additional
windowing criteria.

Remarks The AR model structure is given by the following equation:

A q y t e t( ) ( ) ( )=

AR model parameters are estimated using variants of the least-squares
method. The following table summarizes the common names for
methods with a specific combination of approach and window argument
values.
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Method Combination of approach and
window values

Modified Covariance Method (Default) Forward-backward
approach and no windowing.

Correlation Method Yule-Walker approach, which
corresponding to least squares
plus pre- and postwindowing.

Covariance Method Least squares approach with no
windowing. arx uses this routine.

Examples Given a sinusoidal signal with noise, compare the spectral estimates of
Burg’s method with those found from the forward-backward approach
and no-windowing method on a Bode plot.

y = sin([1:300]') + 0.5*randn(300,1);
y = iddata(y);
mb = ar(y,4,'burg');
mfb = ar(y,4);
bode(mb,mfb)

References Marple, Jr., S.L., Digital Spectral Analysis with Applications, Prentice
Hall, Englewood Cliffs, 1987, Chapter 8.

See Also Algorithm Properties

arx

EstimationInfo

etfe

idpoly

ivar

pem
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spa

step
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Purpose Estimate parameters of ARMAX or ARMA model returning idpoly
object

Syntax m = armax(data,orders)
m = armax(data,orders,'P1',V1,...,'PN',VN)
m = armax(data,'na',na,'nb',nb,'nc',nc,'nk',nk)

Arguments data
iddata object that contains the input-output data.

orders
Vector of integers, specified using the format

orders = [na nb nc nk]

For multiinput systems, nb and nk are row vectors where the ith
element corresponds to the order and delay associated with the
ith input.

When data is a time series, which has no input and one output,
then

orders = [na nc]

Note When refining an estimated model mi, set the model orders
as follows:

orders = mi

'na',na,'nb',nb,'nc',nc,'nk',nk
'na', 'nb', and 'nc' are orders of the ARMAX model. nk is the
delay. na, nb, nc, and nk are the corresponding integer values.
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'P1',V1,...,'PN',VN
Pairs of property names and property values can include any of
the following idmodel properties:

'Focus', 'InitialState', 'Trace', 'MaxIter', 'Tolerance',
'LimitError', and 'FixedParameter'.

See Algorithm Properties, idpoly, and idmodel for more
information.

Description
Note armax only supports time-domain data with single or multiple
inputs and single output. For frequency-domain data, use oe. For the
multioutput case, use ARX or a state-space model (see n4sid and pem).

m = armax(data,orders) returns an idpoly model m with estimated
parameters and covariances (parameter uncertainties). Estimates the
parameters using the prediction-error method and specified orders.

m = armax(data,orders,'P1',V1,...,'PN',VN) returns an idpoly
model m. Use additional property-value pairs to specify the estimation
algorithm properties.

m = armax(data,'na',na,'nb',nb,'nc',nc,'nk',nk) returns an
idpoly model m with orders and delays specified as parameter-value
pairs.

Remarks The ARMAX model structure is

y t a y t a y t n

b u t b u t n n
n a

n k b

a

b

( ) ( ) ( )

( ) ( )

+ − + + − =

− + + − − +
1

1

1

1 1

K

K     ++

− + + − +             c u t c u t n e tn cc1 1( ) ( ) ( )K

A more compact way to write the difference equation is
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A q y t B q u t n C q e tk( ) ( ) ( ) ( ) ( ) ( )= − +

where

• y t( ) — Output at time t .

• na — Number of poles.

• nb — Number of zeroes plus 1.

• nc — Number of C coefficients.

• nk — Number of input samples that occur before the input affects
the output, also called the dead time in the system. For discrete
systems with no dead time, there is a minimum 1–sample delay

because the output depends on the previous input and nk = 1 .

• y t y t na( ) ( )− −1 K — Previous outputs on which the current output
depends.

• u t u t n nk b( ) ( )− − − +1 1K — Previous and delayed inputs on which
the current output depends.

• e t( ) — White-noise disturbance value.

The parameters na, nb, and nc are the orders of the ARMAX model, and
nk is the delay. q is the delay operator. Specifically,

A q a q a qn
n

a
a( ) = + + +− −1 1

1 K

B q b b q b qn
n

b
b( ) = + + +− − +

1 2
1 1K

C q c q c qn
n

c
c( ) = + + +− −1 1

1 K
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If data is a time series, which has no input channels and one output
channel, then armax calculates an ARMA model for the time series

A q y t e t( ) ( ) ( )=

In this case

orders = [na nc]

Algorithm An iterative search algorithm with the properties 'SearchDirection',
'MaxIter', 'Tolerance', and 'Advanced' minimizes a robustified
quadratic prediction error criterion is minimized. The iterations are
terminated either when MaxIter is reached, or when the expected
improvement is less than Tolerance, or when a lower value of the
criterion cannot be found. You can get information about the search
criteria using m.EstimationInfo.

When you do not specify initial parameter values for the iterative search
in orders, they are constructed in a special four-stage LS-IV algorithm.

The cutoff value for the robustification is based on the property
LimitError and on the estimated standard deviation of the residuals
from the initial parameter estimate. It is not recalculated during the
minimization.

To ensure that only models corresponding to stable predictors are tested,
the algorithm performs a stability test of the predictor. Generally, both

C q( ) and F q( ) (if applicable) must have all zeros inside the unit circle.

Minimization information is displayed on the screen when the property
'Trace' is 'On' or 'Full'. With 'Trace' ='Full', both the current
and the previous parameter estimates are displayed in column-vector
form, listing parameters in alphabetical order. Also, the values of the
criterion function are given and the Gauss-Newton vector and its norm
are also displayed. With 'Trace' = 'On' only the criterion values are
displayed.
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References Ljung, L. System Identification: Theory for the User, Upper Saddle River,
NJ, Prentice-Hal PTR, 1999. See chapter about computing the estimate.

See Also Algorithm Properties

EstimationInfo

idpoly

pem
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Purpose Estimate parameters of ARX or AR model using least squares returning
idpoly or idarx object

Syntax m = arx(data,orders)
m = arx(data,orders,'P1',V1,...,'PN',VN)
m = arx(data,'na',na,'nb',nb,'nc',nc,'nk',nk)

Arguments data
An iddata object, an frd object, or an idfrd
frequency-response-data object.

orders
Vector of integers, specified using the format

orders = [na nb nk]

For multiinput systems, nb and nk are row vectors where the ith
element corresponds to the order and delay associated with the
ith input.

When data is a time series, which has no input and one output,
then

orders = [na]

Note When refining an estimated model mi, set the model orders
as follows:

orders = mi

'na',na,'nb',nb,'nc',nc,'nk',nk
'na', 'nb', and 'nc' are orders of the ARMAX model. nk is the
delay. na, nb, nc, and nk are the corresponding integer values.
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'P1',V1,...,'PN',VN
Pairs of property names and property values can include any of
the following idmodel properties:

'Focus', 'InitialState', 'Trace', 'MaxIter', 'Tolerance',
'LimitError', and 'FixedParameter'.

See Algorithm Properties, idpoly, and idmodel for more
information.

Description
Note arx does not support multioutput continuous-time models. Use

state-space model structure instead. When the true noise term e t( ) in
the ARX model structure is not white noise and na is nonzero, the model
estimate is incorrect. In this case, use armax, bj, iv4, or oe.

m = arx(data,orders) returns a model m with estimated parameters
and covariances (parameter uncertainties). For single-output data, the
model is an idpoly object. For multioutput data, the model is an idarx
object. Uses the least-squares method and specified orders.

m = arx(data,orders,'P1',V1,...,'PN',VN) returns a model m. Use
additional property-value pairs to specify the estimation algorithm
properties.

m = arx(data,'na',na,'nb',nb,'nc',nc,'nk',nk) returns a model
m with orders and delays specified as parameter-value pairs.

Remarks arx uses the least-squares method to estimate the parameters of the
ARX model structure:

y t a y t a y t n

b u t b u t n n
n a

n k b

a

b

( ) ( ) ( )

( ) ( )

+ − + + − =

− + + − − +
1

1

1

1 1

K

K     ++ e t( )

The parameters na and nb are the orders of the ARX model, and nk
is the delay.
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• y t( ) — Output at time t .

• na — Number of poles.

• nb — Number of zeroes plus 1.

• nk — Number of input samples that occur before the input affects
the output, also called the dead time in the system. For discrete
systems with no dead time, there is a minimum 1–sample delay

because the output depends on the previous input and nk = 1 .

• y t y t na( ) ( )− −1 K — Previous outputs on which the current output
depends.

• u t u t n nk b( ) ( )− − − +1 1K — Previous and delayed inputs on which
the current output depends.

• e t( ) — White-noise disturbance value.

A more compact way to write the difference equation is

A q y t B q u t n e tk( ) ( ) ( ) ( ) ( )= − +

q is the delay operator. Specifically,

A q a q a qn
n

a
a( ) = + + +− −1 1

1 K

B q b b q b qn
n

b
b( ) = + + +− − +

1 2
1 1K

Time Series Models

For time-series data that contains no inputs, one output and orders =
na, the model has AR structure of order na.

The AR model structure is
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A q y t e t( ) ( ) ( )=

Multiple Inputs and Single-Output Models

For multiinput systems, nb and nk are row vectors where the ith
element corresponds to the order and delay associated with the ith
input.

A q y t B q u t n B q u t n e tk nu nu k
nu

( ) ( ) ( ) ( ) ( ) ( ) ( )= − + + − +1 1 1 K

Multioutput Models

For models with multiple inputs and multiple outputs, na, nb, and nk
contain one row for each output signal.

In the multioutput case, arx minimizes the trace of the prediction error
covariance matrix, or the norm

e t e tT

t

N
( ) ( )

=
∑

1

To transform this to an arbitrary quadratic norm using a weighting
matrix Lambda

e t e tT

t

N
( ) ( )Λ−

=
∑ 1

1

use the syntax

m = arx(data,orders,'NoiseVariance', Lambda)

You can use arx to refine an existing model m_initial as an argument.

m = arx(data,m_initial)

The new model m uses the orders and the weighting matrix for the
prediction errors from m_initial. You can further modify m_initial
by adding a list of property name and value pairs as arguments.
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This is especially useful when some parameters must be fixed using
'FixedParameter' property (see xref).

Continuous-Time Models

For models with one output, continuous-time models can be estimated
from continuous-time frequency-domain data. In this case, na is the
number of estimated denominator coefficients and nb is number of
estimated numerator coefficients.

Note For continuous-time models, omit the delay parameter nk because
it has no meaning in this case. Because estimating continuous-time
ARX models often produces bias, you might get better results by using
the oe method.

For example, when na = 4, nb = 2, the model structure is

G s
b s b

s a s a s a s a
( ) = +

+ + + +
1 2

4
1

3
2

2
3 4

Tip When using continuous-time data, limit the fit to a smaller
frequency range using the 'Focus' idmodel property:

m = arx(datac,[na nb],'focus',[0 wh])

Estimating Initial Conditions

For time-domain data, the signals are shifted such that unmeasured
signals are never required in the predictors. Therefore, there is no need
to estimate initial conditions.

For frequency-domain data, it might be necessary to adjust the data by
initial conditions that support circular convolution. See “Specifying
the Initial States” on page 5-65.
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You can set the property 'InitialState' to one of the following values:

• 'zero' — No adjustment.

• 'estimate' — Perform adjustment to the data by initial conditions
that support circular convolution.

• 'auto' — Automatically choose between 'zero' and 'estimate'
based on the data.

See Algorithm Properties for more information on model properties.

Algorithm QR factorization solves the overdetermined set of linear equations that
constitutes the least-squares estimation problem.

The regression matrix is formed so that only measured quantities are
used (no fill-out with zeros ). When the regression matrix is larger
than MaxSize, data is segmented and QR factorization is performed
iteratively on these data segments.

Examples This example generates input data based on a specified ARX model, and
then uses this data to estimate an ARX model.

A = [1 -1.5 0.7]; B = [0 1 0.5];
m0 = idpoly(A,B);
u = iddata([],idinput(300,'rbs'));
e = iddata([],randn(300,1));
y = sim(m0, [u e]);
z = [y,u];
m = arx(z,[2 2 1]);

See Also Algorithm Properties

EstimationInfo

ar

idarx
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idpoly

iv4

ivar

ivx

pem
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Purpose ARX parameters with variance information from idarx models

Syntax [A,B] = arxdata(m)
[A,B,dA,dB] = arxdata(m)

Arguments model
Name of the idarx model object, which belongs to the idmodel
abstract class.

Note Also accepts idpoly models with an underlying ARX
structure with orders nc=nd=nf=0.

Description [A,B] = arxdata(m) returns A and B as 3–D arrays.

Suppose ny is the number of outputs (the dimension of the vector y(t))
and nu is the number of inputs.

A is an ny-by-ny-by-(na+1) array such that

A(:,:,k+1) = Ak
A(:,:,1) = eye(ny)

where k=0,1,...,na.

B is an ny-by-nu-by-(nb+1) array with

B(:,:,k+1) = Bk

A(0) is always the identity matrix. The leading entries in B equal to
zero, which means there are no delays in the model.

Note For a time series, B = [].
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[A,B,dA,dB] = arxdata(m) returns A and B matrices, and dA and dB as
the estimated standard deviations of A and B, respectively.

Remarks A and B are 2–D or 3–D arrays and are returned in the standard
multivariable ARX format (see idarx), describing the model.

A q y t B q u t n B q u t n e tk nu nu k
nu

( ) ( ) ( ) ( ) ( ) ( ) ( )= − + + − +1 1 1 K

Here and

A and B matrices, which have dimensions ny-by-ny and ny-by-nu,
respectively. Here, ny is the number of outputs (the dimension of the
vector y(t)) and nu is the number of inputs.

See Also idarx

idpoly
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Purpose Compute and compare loss functions for single-output ARX models

Syntax V = arxstruc(ze,zv,NN)
V = arxstruc(ze,zv,NN,maxsize)

Arguments ze
Estimation data set can be iddata or idfrd object.

zv
Validation data set can be iddata or idfrd object.

NN
Matrix defines the number of different ARX-model structures .
Each row of NN is of the form

nn = [na nb nk]

maxsize

Description
Note Use arxstruc single-output systems only.

V = arxstruc(ze,zv,NN) returns V, which contains the loss functions
in its first row. The remaining rows of V contain the transpose of NN, so
that the orders and delays are given just below the corresponding loss
functions. The last column of V contains the number of data points in ze.

V = arxstruc(ze,zv,NN,maxsize) uses the additional specification
of the maximum data size.

See Algorithm Properties for an explanation of maxsize.

with the same interpretation as described for arx. See struc for easy
generation of typical NN matrices for single-input systems.

The output argument V is best analyzed using selstruc. The selection
of a suitable model structure based on the information in v is normally
done using selstruc.
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Remarks Each of ze and zv is an iddata object containing output-input data.
Frequency-domain data and idfrd objects are also supported. Models
for each of the model structures defined by NN are estimated using the
data set ze. The loss functions (normalized sum of squared prediction
errors) are then computed for these models when applied to the
validation data set zv. The data sets ze and zv need not be of equal size.
They could, however, be the same sets, in which case the computation
is faster.

Examples Compare first- and fifth-order models with one delay using
cross-validation on the second half of the data set. Then, select the
order that gives the best fit to the validation data set.

NN = struc(1:5,1:5,1);
V = arxstruc(z(1:200),z(201:400),NN);
nn = selstruc(V,0);
m = arx(z,nn);

See Also Algorithm Properties

arx

idpoly

ivstruc

selstruc

struc
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Purpose Reduce model order (requires Control System Toolbox)

Syntax MRED = balred(M)
MRED = balred(M,ORDER,'DisturbanceModel','None')

Description This function reduces the order of any model M given as an idmodel
object. The resulting reduced-order model, MRED, is an idss model.

The function requires several routines in Control System Toolbox.

ORDER: The desired order (dimension of the state-space representation).
If ORDER = [], which is the default, a plot shows how the diagonal
elements of the observability and controllability Gramians of a balanced
realization decay with the order of the representation. You are then
prompted to select an order based on this plot. The idea is that such a
small element has a negligible influence on the input-output behavior
of the model. We recommend that you choose an order such that only
large elements in these matrices are retained.

'DisturbanceModel': If the property DisturbanceModel is set to
'None', then an output-error model MRED is produced: that is, one with
the Kalman gain K equal to zero. Otherwise (default), the disturbance
model is also reduced.

The function recognizes whether M is a continuous- or discrete-time
model and performs the reduction accordingly. The resulting model,
MRED, is similar to M in this respect.

There are several options for how the reduction is performed: AbsTol,
RelTol, Offset, Elimination.

Algorithm The function balred from Control System Toolbox is used. The plot, in
case ORDER = [], shows the vector g returned by balreal.

Examples Build a high-order multivariable ARX model, reduce its order to 3, and
compare the frequency responses of the original and reduced models:

M = arx(data,[4*ones(3,3),4*ones(3,2),ones(3,2)]);
MRED = balred(M,3);
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bode(M,MRED)

Use the reduced-order model as an initial condition for a third-order
state-space model.

M2 = pem(data,MRED);

See Also balreal
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Purpose Estimate parameters of Box-Jenkins model returning idpoly object

Syntax m = bj(data,orders)
m = bj(data,'nb',nb,'nc',nc,'nd',nd,'nf',nf,'nk',nk)
m = bj(data,orders,'Property1',Value1,'Property2',Value2,...)

Description bj returns m as an idpoly object with the resulting parameter
estimates, together with estimated covariances. The bj function
estimates parameters of the Box-Jenkins model structure

using a prediction error method.

data is an iddata object containing the output-input data.
Frequency-domain signals are not supported by bj. Use oe instead.

The model orders can be specified by setting the argument orders to

orders = [ nb nc nd nf nk]

The parameters nb, nc, nd, and nf are the orders of the Box-Jenkins
model and nk is the delay. Specifically,

The orders can also be defined as property name/property value pairs
(...,'nb',nb,...). Alternatively, you can specify the vector as

orders = mi
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where mi is an initial guess at the Box-Jenkins model given in idpoly
format.

For multiinput systems, nb, nf, and nk are row vectors with as many
entries as there are input channels. Entry number i then describes the
orders and delays associated with the ith input.

The structure and the estimation algorithm are affected by any property
name/property value pairs that are set in the input argument list.
Useful properties are 'Focus', 'InitialState', 'Trace', 'MaxIter',
'Tolerance', 'LimitError', and 'FixedParameter'.

See Algorithm Properties and the reference pages for idmodel and
idpoly for details of these properties and their possible values.

bj does not support multioutput models. Use a state-space model for
this case (see n4sid and pem).

Examples Here is an example that generates data and stores the results of the
startup procedure separately.

B = [0 1 0.5];
C = [1 -1 0.2];
D = [1 1.5 0.7];
F = [1 -1.5 0.7];
m0 = idpoly(1,B,C,D,F,0.1);
e = iddata([],randn(200,1));
u = iddata([],idinput(200));
y = sim(m0,[u e]);
z = [y u];
mi = bj(z,[2 2 2 2 1],'MaxIter',0)
m = bj(z,mi,'Maxi',10)
m.EstimationInfo
m = bj(z,m); % Continue if m.es.WhyStop shows that

% maxiter is reached.
compare(z,m,mi)
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Algorithm bj uses essentially the same algorithm as armax with modifications to
the computation of prediction errors and gradients.

See Also Algorithm Properties

EstimationInfo

idpoly

pem
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Purpose Plot Bode diagram of frequency response with confidence interval

Syntax bode(m)
[mag,phase,w] = bode(m)
[mag,phase,w,sdmag,sdphase] = bode(m)
bode(m1,m2,m3,...,w)
bode(m1,'PlotStyle1',m2,'PlotStyle2',...)
bode(m1,m2,m3,..'sd',sd,'mode',mode,'ap',ap)

bode(m1,m2,m3,'sd',sd,'mode',mode,'ap',ap,'fill')

Description bode computes the magnitude and phase of the frequency response
of idmodel and idfrd models. When invoked without left-hand
arguments, bode produces a Bode plot on the screen.

bode(m) plots the Bode response of an arbitrary idmodel or idfrd
model m. This model can be continuous or discrete, and SISO or MIMO.
The InputNames and OuputNames properties of the models are used to
plot the responses for different I/O channels in separate plots. Pressing
the Enter key advances the plot from one input-output pair to the next
one. Typing Ctrl+C aborts the plotting in an orderly fashion

If m contains information about both I/O channels and output noise
spectra, only the I/O channels are shown. To show the output noise
spectra, enter m('n') ('n' for 'noise') in the model list. Analogously,
you can select specific I/O channels with normal subreferencing
m(ky,ku).

Argument w

bode(m,w) explicitly specifies the frequency range or frequency points
to be used for the plot or for computing the response.

To focus on a particular frequency interval [wmin,wmax], set w =
{wmin,wmax} (notice the curly brackets). This plots the response for 100
frequency points logarithmically spaced from wmin to wmax. You can
change this to NP points by using w = {wmin,wmax,NP}.
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To use particular frequency points, set w to the vector of desired
frequencies. Use logspace to generate logarithmically spaced frequency
vectors. All frequencies should be specified in rad/s.

Note that the frequencies cannot be specified for idfrd objects. For
those the plot and response are calculated for the internally stored
frequencies. However, the plot is restricted to the range {wmin,wmax} if
this is specified.

If no frequency range is specified, a default choice is made based on
the dynamics of the model.

Property Name/Property Value Pairs ’sd’/sd, ’ap’/ap, and
’mode’/mode

The pairs can appear in any order or be omitted.

• sd: If sd is specified as a number larger than zero, confidence
intervals for the functions are added to the graph as dash-dotted
curves (of the same color as the estimate curve). They indicate the
confidence regions corresponding to sd standard deviations. If an
argument 'fill' is included in the argument list, the confidence
region is marked as a filled band instead.

• ap: By default, amplitude and phase plots are shown simultaneously
for each I/O channel present in m. For spectra, phase plots are
omitted. To show amplitude plots only, use ap = 'A'. For phase plots
only, use ap = 'P'. The default is ap = 'B' for both plots.

• mode: To obtain all input/output plots in the same diagram use
mode = 'same'.

Several Models

bode(m1,m2,...,mN) or bode(m1,m2,...mN,w) plots the Bode response
of several idmodel or idfrd models on a single figure. The models can
be mixes of different sizes and continuous/discrete. The sorting of the
plots is based on the InputNames and OutputNames. If the frequencies w
are specified, these will apply to all non-idfrd models in the list. If you
want different frequencies for different models, you should thus first
convert them to idfrd objects using the idfrd command.
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bode(m1,'PlotStyle1',...,mN,'PlotStyleN') further specifies
which color, line style, and/or marker should be used to plot each
system, as in

bode(m1,'r--',m2,'gx')

Arguments The output argument w contains the frequencies for which the response
is given, whether specified among the input arguments or not. The
output arguments mag and phase are 3-D arrays with dimensions

(number of outputs)x(number of inputs)x(length of w)

For SISO systems, mag(1,1,k) and phase(1,1,k) give the magnitude
and phase (in degrees) at the frequency = w(k). To obtain the
result as a normal vector of responses, use mag = mag(:) and phase
= phase(:).

For MIMO systems, mag(i,j,k) is the magnitude of the frequency
response at frequency w(k) from input j to output i, and similarly for
phase(i,j,k).

If sdmag and sdphase are specified, the standard deviations of the
magnitude and phase are also computed. Then sdmag is an array of the
same size as mag, containing the estimated standard deviations of the
response, and analogously for sdphase.

See Also etfe

ffplot

freqresp

idfrd

nyquist

spa

spafdr
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Purpose Compare model output and measured output

Syntax compare(data,m);
compare(data,m,k)
compare(data,m,k,'Samples',sampnr,'InitialState',init,'OutputPlots
',Yplots)
compare(data,m1,m2,...,mN)
compare(data,m1,'PlotStyle1',...,mN,'PlotStyleN')
[yh,fit,x0] = compare(data,m1,'PlotStyle1',...,mN,'PlotStyleN',k)

Description data is the output-input data in the usual iddata object format. data
can also be an idfrd object with frequency-response data.

compare computes the output yh that results when the model m is
simulated with the input u. m can be any idmodel or idnlmodel model
object. The result is plotted together with the corresponding measured
output y. The percentage of the output variation that is explained by
the model

fit = 100*(1 - norm(yh - y)/norm(y-mean(y)))

is also computed and displayed. For multioutput systems, this is done
separately for each output. For frequency-domain data (or in general for
complex valued data) the fit is still calculated as above, but only the
absolute values of y and yh are plotted.

When the argument k is specified, the k step-ahead prediction of y
according to the model m are computed instead of the simulated output.
In the calculation of , the model can use outputs up to time :

, , … (and inputs up to the current time t). The
default value of k is inf, which gives a pure simulation from the input
only. Note that for frequency-domain data, only simulation (k = inf)
is allowed, and for time-series data (no input) only prediction (k not
inf) is possible.
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Property Name/Property Value Pairs

The optional property name/property value pairs 'Samples'/sampnr,
'InitialState'/init, and 'OutputPlots'/Yplots can be given in
any order.

The argument Yplots can be a cell array of strings. Only the outputs
with OutputName in this array are plotted, while all are used for the
necessary computations. If Yplots is not specified, all outputs are
plotted.

The argument sampnr indicates that only the sample numbers in this
row vector are plotted and used for the calculation of the fit. The whole
data record is used for the simulation/prediction.

The argument init determines how to handle initial conditions in the
models:

• init = 'e' (for 'estimate') estimates the initial conditions for
best fit.

• init = 'm' (for 'model') used the model’s internally stored initial
state.

• init = 'z' (for 'zero') uses zero initial conditions.

• init = x0, where x0 is a column vector of the same size as the state
vector of the models, uses x0 as the initial state.

• init = 'e' is the default.

Several Models

When several models are specified, as in compare(data,m1,m2,...,mN),
the plots show responses and fits for all models. In that case data
should contain all inputs and outputs that are required for the different
models. However, some models might correspond to subselections of
channels and might not need all channels in data. In that case the
proper handling of signals is based on the InputNames and OutputNames
of data and the models.
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With compare(data,m1,'PlotStyle1',...mN,'PlotStyle2'), the
color, line style, and/or marker can be specified for the curves associated
with the different models. The markers are the same as for the regular
plot command. For example,

compare(data,m1,'g_*',m2,'r:')

If data contains several experiments, separate plots are given for the
different experiments. In this case sampnr, if specified, must be a cell
array with as many entries as there are experiments.

Arguments When output arguments [yh,fit,x0] = compare(data,m1,..,mN)
are specified, no plots are produced.

yh is a cell array of length equal to the number of models. Each cell
contains the corresponding model output as an iddata object.

fit is, in the general case, a 3-D array with fit(kexp,kmod,ky)
containing the fit (computed as above) for output ky, model kmod, and
experiment kexp.

x0 is a cell array, such that x0{kmod} is the estimated initial state for
model number kmod. If data is multiexperiment, X0{kmod} is a matrix
whose column number kexp is the initial state vector for experiment
number kexp.

Examples Split the data record into two parts. Use the first one for estimating a
model and the second one to check the model’s ability to predict six
steps ahead.

ze = z(1:250);
zv = z(251:500);
m= armax(ze,[2 3 1 0]);
compare(zv,m,6);
compare(zv,m,6,'Init','z') % No estimation of

% the initial state.
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See Also pe

predict

sim
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Purpose Estimate time-series covariance functions

Syntax R = covf(data,M)
R = covf(data,M,maxsize)

Description data is an iddata object and M is the maximum delay -1 for which
the covariance function is estimated. The routine is intended for
time-domain data only.

Let z contain the output and input channels

where y and u are the rows of data.OutputData and data.InputData,
respectively, with a total of nz channels.

R is returned as an nz2 -by- M matrix with entries

where is the jth row of z, and missing values in the sum are replaced
by zero.

The optional argument maxsize controls the memory size as explained
under Algorithm Properties.

The easiest way to describe and unpack the result is to use

reshape(R(:,k+1),nz,nz) = E z(t)*z'(t+k)

Here ' is complex conjugate transpose, which also explains how complex
data is handled. The expectation symbol E corresponds to the sample
means.
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Algorithm When nz is at most two, and when permitted by maxsize, a fast Fourier
transform technique is applied. Otherwise, straightforward summing
is used.

See Also iddata

spa
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Purpose Estimate impulse response using prewhitened-based correlation
analysis

Syntax cra(data);
[ir,R,cl] = cra(data,M,na,plot);
cra(R);

Description data is the output-input data given as an iddata object. The routine is
intended for time-domain data only.

The routine only handles single-input-single-output data pairs. (For the
multivariate case, apply cra to two signals at a time, or use impulse.)
cra prewhitens the input sequence; that is, cra filters u through a
filter chosen so that the result is as uncorrelated (white) as possible.
The output y is subjected to the same filter, and then the covariance
functions of the filtered y and u are computed and graphed. The
cross correlation function between (prewhitened) input and output is
also computed and graphed. Positive values of the lag variable then
correspond to an influence from u to later values of y. In other words,
significant correlation for negative lags is an indication of feedback
from y to u in the data.

A properly scaled version of this correlation function is also an estimate
of the system’s impulse response ir. This is also graphed along with
99% confidence levels. The output argument ir is this impulse response
estimate, so that its first entry corresponds to lag zero. (Negative lags
are excluded in ir.) In the plot, the impulse response is scaled so that
it corresponds to an impulse of height 1/T and duration T, where T is
the sampling interval of the data.

The output argument R contains the covariance/correlation information
as follows:

• The first column of R contains the lag indices.

• The second column contains the covariance function of the (possibly
filtered) output.
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• The third column contains the covariance function of the (possibly
prewhitened) input.

• The fourth column contains the correlation function. The plots can
be redisplayed by cra(R).

The output argument cl is the 99% confidence level for the impulse
response estimate.

The optional argument M defines the number of lags for which the
covariance/correlation functions are computed. These are from -M to M,
so that the length of R is 2M+1. The impulse response is computed from
0 to M. The default value of M is 20.

For the prewhitening, the input is fitted to an AR model of order na.
The third argument of cra can change this order from its default value
na = 10. With na = 0 the covariance and correlation functions of the
original data sequences are obtained.

plot: plot = 0 gives no plots. plot = 1 (the default) gives a plot of
the estimated impulse response together with a 99% confidence region.
plot = 2 gives a plot of all the covariance functions.

An often better alternative to cra is the functions impulse and step,
which use a high-order FIR model to estimate the impulse response.

Examples Compare a second-order ARX model’s impulse response with the one
obtained by correlation analysis.

ir = cra(z);
m = arx(z,[2 2 1]);
imp = [1;zeros(19,1)];
irth = sim(m,imp);
subplot(211)
plot([ir irth])
title('impulse responses')
subplot(212)
plot([cumsum(ir),cumsum(irth)])
title('step responses')
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See Also impulse

step
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Purpose Store nonlinearity estimator with user-defined unit function for
nonlinear ARX and Hammerstein-Wiener models

Syntax C=customnet(H)
C=customnet(H,Property1,Value1,...PropertyN,ValueN)

Arguments H
User-defined function handle of the unit function of the custom
net.

H must point to a function of the form [f,g,a] =
function_name(x), where f is the value of the function, g=df/dx
and indicates the unit function active range. g is significantly
nonzero in the interval [-a a].

Description customnet is an object that stores a custom nonlinear estimator with a
user-defined unit function.

You can use the constructor to create the nonlinearity object, as follows:

C=customnet(H) creates a nonlinearity estimator object with a
user-defined unit function using the function handle H.

C=customnet(H,Property1,Value1,...PropertyN,ValueN) creates a
nonlinearity estimator using property-value pairs defined in “customnet
Properties” on page 12-57.

Remarks Use customnet to define a nonlinear function y F x= ( ) , where y is
scalar and x is an m-dimensional row vector. The unit function is based
on the following function expansion with a possible linear term L:

F x x r PL a f x r Qb c( ) ( )= − + −( ) +( ) +
+

1 1 1 K

                          aa f x r Qb c dn n n−( ) +( ) +
where f is a unit function that you define using the function handle H.

P and Q are m-by-p and m-by-q projection matrices, respectively. The
projection matrices P and Q are determined by principal component
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analysis of estimation data. Usually, p=m. If the components of x in
the estimation data are linearly dependent, then p<m. The number of
columns of Q, q, corresponds to the number of components of x used
in the unit function.

When used to estimate nonlinear ARX models, q is equal to the size of
the NonlinearRegressors property of the idnlarx object. When used
to estimate Hammerstein-Wiener models, m=q=1 and Q is a scalar.

r is a 1-by-m vector and represents the mean value of the regressor
vector computed from estimation data.

d, a, and c are scalars.

L is a p-by-1 vector.

b are q-by-1 vectors.

The function handle of the unit function of the custom net must have the
form [f,g,a] = function_name(x). This function must be vectorized,
which means that for a vector or matrix x, the output arguments f and
g must have the same size as x and be computed element-by-element.

customnet
Properties

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(C)
% Get value of NumberOfUnits property
C.NumberOfUnits

You can use dot notation to assign property values to the object. set is
not supported for MCOS objects.

For example, the following two commands are equivalent:

C.NumberOfUnits=5
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The Parameters property is a structure. Typically, the values of this
structure are set by estimating a model with a customnet nonlinearity.
If you need to set the values of this structure to values given by variables
r, P, Q, L, a_k, b_k, c_k and d, you can use the following syntax:

X=struct('RegressorMean',r,
'NonLinearSubspace',P,
'LinearSubspace',Q,
'LinearCoef',L,
'Dilation',b_k,
'Translation',c_k,
'OutputCoef',a_k,
'OutputOffset',d);

C.Parameters=X;

Property Name Description

NumberOfUnits Integer specifies the number of
nonlinearity units in the expansion.
Default=10.

For example:

customnet(H,'NumberOfUnits',5)

LinearTerm Can have the following values:

• 'on'—Estimates the vector L in the expansion.

• 'off'—Fixes the vector L to zero.

For example:

customnet(H,'LinearTerm','on')
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Property Name Description

Parameters A structure containing the parameters in the nonlinear
expansion, as follows:

• RegressorMean: 1-by-m vector containing the means of x
in estimation data, r.

• NonLinearSubspace: m-by-q matrix containing Q.

• LinearSubspace: m-by-p matrix containing P.

• LinearCoef: p-by-1 vector L.

• Dilation: q-by-1 matrix containing the values b_k.

• Translation: 1-by-n vector containing the values c_k.

• OutputCoef: n-by-1 vector containing the values a_k.

• OutputOffset: scalar d.

UnitFcn Stores the function handle that points to the unit function.

Examples The following code, contained in gaussunit.m, defines a sample unit
function.

[f, g, a] = GAUSSUNIT(x)
% x: unit function variable
% f: unit function value
% g: df/dx
% a: unit active range (g(x) is significantly
% nonzero in the interval [-a a])

% The unit function must be "vectorized": for
% a vector or matrix x, the output arguments f and g
% must have the same size as x,
% computed element-by-element.

% GAUSSUNIT customnet unit function example
[f, g, a] = gaussunit(x)
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f = exp(-x.*x);
if nargout>1

g = - 2*x.*f;
a = 0.2;

end

You typically use custom networks in nlarx and nlhw model estimation
commands. For example:

% Define handle to example unit function.
H = @gaussunit;
% Estimate nonlinear ARX model using
% Gauss unit function with 5 units.
m = nlarx(Data,Orders,customnet(H,'NumberOfUnits',5));

See Also evaluate

nlarx

nlhw
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Purpose Store custom regressor for nonlinear ARX models

Syntax C=customreg(Function,Arguments)
C=customreg(Function,Arguments,Delays,Vectorized)

Arguments Function
Function handle or string representing a function of input and
output variables.

Arguments
Cell array of strings that represent the names of model inputs
and outputs used in the function Function. Each input and
output name must coincide with the strings in the InputName and
OutputName properties of the corresponding idnlarx object. The
size of Arguments must match the number of Function inputs.

Delays
Vector of positive integers representing the delays of Arguments
variables. The size of Delays must match the size of Arguments.
Default: 1 for each vector element.

Vectorized
Flag that indicates whether Function is in a format that supports
vectorized computations when applied to vector arguments. Can
have values 1 (true) and 0 (false). Default: 0.

Description C=customreg(Function,Arguments) creates an object that stores
custom regressors for nonlinear ARX models. Custom regressor is
defined using the function of input and output variables, Function.

C=customreg(Function,Arguments,Delays,Vectorized) create a
custom regressor that includes the delays corresponding to inputs or
outputs in Arguments.

For multioutput models with p outputs, the custom regressor is p-by-1
cell array or an array of customreg object, where the kyth entry defines
the custom regressor for output ky.

12-61



customreg

Remarks Use the customreg object to define a custom regressor entering the
nonlinearity estimator of the nonlinear ARX models (idnlarx object).
The custom regressor function is usually a nonlinear function of inputs
and outputs.

To list custom regressors of a multioutput model, type the following
command:

model.custom

To retrieve rth custom regressor for output ky, type the following
command:

model.custom{ky}(r)

For more information about regressors, type help regressors.

For more information on creating custom regressors that are polynomial
combinations of delayed inputs and outputs, type help polyreg.

Use the Vectorized property to specify whether to compute custom
regressors using vectorized form. If you know that your regressor
formulas can be vectorized, set Vectorized to 1 after creating the
customreg object to achieve better performance. To better understand
vectorization, consider that custom regressors are defined by a formula,
such as z=@(x,y)x^2*y. x and y are vectors and each variable is
evaluated over a time grid. Therefore, z must be evaluated for each
(xi,yi) pair, and the results are concatenated to produce a z vector,
as follows:

for k = 1:length(x)
z(k) = x(k)^2*y(k)

end

The above expression is a nonvectorized computation and tends to be
slow. Specifying a Vectorized computation uses MATLAB vectorization
rules to evaluate the regressor expression using matrices instead of the
FOR-loop and results in faster computation, as follows:

% ".*" indicates element-wise operation
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z=(x.^2).*y

customreg
Properties

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(C)
% Get value of Arguments property
C.Arguments

You can use dot notation to assign property values to the object. set is
not supported for MCOS objects.

For example, the following two commands are equivalent:

C.Delays=[2 3]

Property Name Description

Function Function handle or string representing a function of standards
regressors.

For example:

cr = @(x,y) x*y

Arguments Cell array of strings that represent the names of model inputs
and outputs used in the function Function. Each input and
output name must coincide with the strings in the InputName
and OutputName properties of the idnlarx object with the
custom regressor. The size of Arguments must match the
number of Function inputs.

For example, Arguments correspond to {'y1','u1'} in the
following syntax:

C = customreg(cr,{'y1','u1'},[2 3])
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Property Name Description

Delays Vector of positive integers representing the delays of
Arguments variables. The size of Delays must match the size
of Arguments. Default: 1 for each vector element.

For example, Delays correspond to [2 3] in the following
syntax:

C = customreg(cr,{'y1','u1'},[2 3])

Vectorized Can have the following values:

• 1—Function is computed in vectorized form when called
with vector arguments.

• 0—Function is not computed in vectorized form when called
with vector arguments.

Examples Consider a system that has input u and output y. Suppose that the
following transformations are useful for predicting future outputs, based
on physical insight into the relationship between measured variables:

• u(t-1)sin(y(t-3))

• u(t-2)^3

You can define custom regressors in any of the two ways:

• Cell array of strings. For example:

C={'u(t-1)*sin(y(t-3)','u(t-2)^3'}

• Object array of customreg objects. For example:

cr1=@(x,y) x*sin(y)
cr2=@(x) x^3
C=[customreg(cr1,{'u' 'y'},[1 3]),...

customreg(cr2,{'u'},2)]

12-64



customreg

After you define the custom regressors, estimate the nonlinear ARX
model using the following syntax:

m = nlarx(Data,Orders,linear,'CustomRegressors',C)

In this case, u and y are Data channel names, and the nonlinearity
estimator linear specifies that the prediction is a linear function of
custom regressors, where the custom regressor might be nonlinear.
You can introduce additional nonlinearities using nonlinearity
estimators. For a complete list of available nonlinearities, type idprops
idnlestimators.

To create two custom regressors as an object array, use the following
commands:

cr1=@(x,y) x*sin(y);
cr2=@(x) x^3;
C=[customreg(cr1,{'u1' 'y1'},[1 3]),...

customreg(cr2,{'u1'},2)]
% Use this customreg object array for estimating
% nonlinear ARX model
m=nlarx(Data,Orders,'wavenet','CustomRegressor',C);

The following command is equivalent to the previous code snippet and
incorporates custom regressor definitions directly in the estimator
command:

m = nlarx(Data,Orders,'wavenet',...
'CustomRegressors',...

{'u1(t-1)*sin(y1(t-3))','u1(t-2)^3'});

See Also customreg

nlarx
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Purpose Convert model from continuous to discrete time

Syntax md = c2d(mc,T)
md = c2d(mc,T,method)
[md,G] = c2d(mc,T,method)

Description mc is a continuous-time model such as any idmodel object (idgrey,
idproc, idpoly, or idss). md is the model that is obtained when it is
sampled with sampling interval T.

method = 'zoh' (default) makes the translation to discrete time under
the assumption that the input is piecewise constant (zero-order hold).

method = 'foh' assumes the input to be piecewise linear between the
sampling instants (first-order hold).

With Control System Toolbox, methods 'tustin', 'prewarp', and
'matched' are also supported. In these cases the covariance matrix
is not transformed.

Note that the innovations variance of the continuous-time model
is interpreted as the intensity of the spectral density of the noise
spectrum. The noise variance in md is thus given as /T.

idpoly and idss models are returned in the same format. idgrey
structures are preserved if their CDMfile property is equal to 'cd'.
Otherwise they are transformed to idss objects. idproc models are
returned as idgrey objects.

For idpoly models, the covariance matrix is translated by the use of
numerical derivatives. The step sizes used for the differentiation are
given by the function nuderst. For idss, idproc, and idgrey models,
the covariance matrix is not translated, but covariance information
about the input-output properties is included in md. To inhibit the
translation of covariance information (which may take some time), use
c2d(mc,T,'covariance','none').

The output argument G is a matrix that transforms the initial state x0
of mc to the initial state of md as
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X0d=G * [X0; u(0)],

where u(0) is the input at time 0. For idproc models, the state
variables correspond to those of idgrey(mc). For idpoly models, G
is returned as the empty matrix.

Examples Define a continuous-time system and study the poles and zeros of the
sampled counterpart.

mc = idpoly(1,1,1,1,[1 1 0],'Ts',0);
md = c2d(mc,0.5);
pzmap(md)

See Also d2c
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Purpose Store dead-zone nonlinearity estimator for Hammerstein-Wiener models

Syntax s=deadzone(ZeroInterval,I)

Description deadzone is an object that stores the dead-zone nonlinearity estimator
for estimating Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:

s=deadzone(ZeroInterval,I) creates a dead-zone nonlinearity
estimator object, initialized with the zero interval I.

Use evaluate(d,x) to compute the value of the function defined by
the deadzone object d at x.

Remarks Use deadzone to define a nonlinear function y F x= ( ) , where F is a
function of x and has the following characteristics:

a x b F x
x a F x x a
x b

≤ < =
< = −
≥

              
                   

( )
( )

0

                    F x x b( ) = −

y and x are scalars.

saturation
Properties

You can specify the property value as an argument in the constructor
to specify the object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List ZeroInterval property value
get(d)
d.ZeroInterval

You can use dot notation to assign property values to the object. set is
not supported for MCOS objects.

For example, the following two commands are equivalent:
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d.ZeroInterval=[-1 1]

Property Name Description

ZeroInterval 1-by-2 row vector that specifies the
initial zero interval of the nonlinearity.
Default=[NaN NaN].

For example:

deadzone('ZeroInterval',[-1.5 1.5])

Examples Use deadzone to specify the dead-zone nonlinearity estimator in
Hammerstein-Wiener models. For example:

m=nlhw(Data,Orders,deadzone([-1 1]),[]);

The dead-zone nonlinearity is initialized at the interval [-1 1]. The
interval values are adjusted to the estimation data by nlhw.

See Also nlhw
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Purpose Estimate time delay (dead time) from data

Syntax nk = delayest(Data)
nk = delayest(Data,na,nb,nkmin,nkmax,maxtest)

Description Data is an iddata object containing the input-output data. It can also be
an idfrd object defining frequency-response data. Only single-output
data can be handled.

nk is returned as an integer or a row vector of integers, containing the
estimated time delay in samples from the input(s) to the output in Data.

The estimate is based on a comparison of ARX models with different
delays:

The integer na is the order of the A polynomial (default 2). nb is a row
vector of length equal to the number of inputs, containing the order(s) of
the B polynomial(s) (default all 2).

nkmin and nkmax are row vectors of the same length as the number of
inputs, containing the smallest and largest delays to be tested. Defaults
are nkmin = 0 and nkmax = nkmin+20.

If nb, nkmax, and/or nkmin are entered as scalars in the multiinput case,
all inputs will be assigned the same values.

maxtest is the largest number of tests allowed (default 10,000).
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Purpose Remove trends from output-input data

Syntax zd = detrend(z)
zd = detrend(z,o,brkp)

Description z is an iddata object containing the input-output data. detrend
removes the trend from each signal and returns the result as an iddata
object zd.

The default (o = 0) removes the zeroth order trends; that is, the sample
means are subtracted. If z is a frequency-domain data object, the
response at frequency 0 is then set to zero,

With o = 1, linear trends are removed after a least squares fit. With
brkp not specified, one single line is subtracted from the entire data
record. A continuous piecewise linear trend is subtracted if brkp
contains breakpoints at sample numbers given in a row vector.

Note that detrend for iddata objects differs somewhat from detrend
in the Signal Processing Toolbox.

Examples Remove a V-shaped trend from the output with its peak at sample
number 119, and remove the sample mean from the input.

zd1(:,1,[]) = detrend(z(:,1,[]),1,119);
zd2(:,[],1) = detrend(z(:,[],1));
zd = [zd1,zd2];
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Purpose Difference signals in iddata objects

Syntax zdi = diff(z)
zdi = diff(z,n)

Description z is a time-domain iddata object. diff(z) and diff(z,n) apply this
command to each of the input/output signals in z.
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Purpose Convert model from discrete to continuous time

Syntax mc = d2c(md)
mc = d2c(md,method)
mc = d2c(md,'CovarianceMatrix',cov,'InputDelay',inpd)

Description The discrete-time model md, given as any idmodel object, is
converted to a continuous-time counterpart mc. The covariance
matrix of the parameters in the model is also translated using the
Gauss approximation formula and numerical derivatives of the
transformation. The step sizes in the numerical derivatives are
determined by the function nuderst. To inhibit the translation of the
covariance matrix and save time, enter among the input arguments
(...,'CovarianceMatrix,'None,....)) (any abbreviations will do).

method is one of the input intersample behaviors 'zoh' (zero-order hold)
or 'foh' (first-order hold). If method is not specified, the InterSample
behavior of the data from which md was estimated is used.

With Control System Toolbox, methods 'tustin', 'prewarp', and
'matched' are also supported. In these cases no translation of the
covariance matrix takes place.

If the discrete-time model contains pure time delays, that is, ,
then these are first removed before the transformation is made.
These delays are appended as pure time delay (dead time) to the
continuous-time model as the property InputDelay. To have the time
delay approximated by a finite-dimensional continuous system, enter
among the input arguments (...,'InputDelay',0,...).

If the noise variance is in md, and its sampling interval is T, then the
continuous-time model has an indicated level of noise spectral density
equal to T .

While idpoly and idss models are returned in the same format,
idarx models are returned as idss models mc. The reason is that the
transformation does not preserve the special structure of idarx. The
idgrey structures are preserved if their CDMfile property is equal to
cd. Otherwise they are transformed to idss objects.
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Note The transformation from discrete to continuous time is not
unique. d2c selects the continuous-time counterpart with the slowest
time constants consistent with the discrete-time model. The lack of
uniqueness also means that the transformation can be ill-conditioned
or even singular. In particular, poles on the negative real axis, in the
origin, or in the point 1, are likely to cause problems. Interpret the
results with care.

Examples Transform an identified model to continuous time and compare the
frequency responses of the two models.

m = n4sid(data,3)
mc = d2c(m);
bode(m.mc,'sd',3)

Note that you can include the transformation to continuous time in the
n4sid command by specifying the model to be continuous time.

mc = n4sid(data,3,'Ts',0)

See Also c2d

nuderst
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Purpose Information about estimation process results

Syntax m.EstimationInfo
m.es
m.es.DataLength, etc

Description Any estimated model has the property EstimationInfo, which is
a structure whose fields give information about the results of the
estimation. Depending on whether it is an estimated parametric
idmodel or an estimated frequency response idfrd, EstimationInfo
will contain different fields.

idmodel Case

The model structure will contain the properties ParameterVector,
CovarianceMatrix, and NoiseVariance, which are all calculated in the
estimation process (see the reference page for idmodel). In addition,
EstimationInfo contains the following fields:

• Status: Information whether the model has been estimated, or
modified after being estimated.

• Method: Name of the estimation command that produced the model.

• LossFcn: Value of the identification criterion at the estimate.
Normally equal to the determinant of the covariance matrix of the
prediction errors, that is, the determinant of NoiseVariance. Note
that the loss function for the minimization might be different due to
LimitError. The value of the nonrobustified loss function is always
stored in LossFcn.

• FPE: Akaike’s Final Prediction Error, defined as
LossFcn *(1+d/N}/(1-d/N), where d is the number of
estimated parameters and N is the length of the data record.

• DataName: Name of the data set from which the model was estimated.
This is equal to the property name of the iddata object. If this was
not defined, the name of the MATLAB iddata variable is used.

• DataLength: Length of the data record.
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• DataTs: Sampling interval of the data.

• DataDomain: 'Time' or 'Frequency', depending on the data domain.

• DataInterSample: Intersample behavior of the data from which the
model was estimated. This equals the property InterSample of the
iddata object. (See iddata.)

• WhyStop: For models that have been estimated by iterative search.
The stopping rule that caused the iterations to terminate. Assumes
values such as'MaxIter reached', 'No improvement possible
along the search vector', or 'Near (local) minimum'. The
latter means that the expected improvement is less than Tolerance
(see Algorithm Properties).

• UpdateNorm: Norm of the Gauss-Newton vector at the last iteration.

• LastImprovement: Relative improvement of the criterion value at the
last iteration.

• Iterations: Number of iterations used in the search.

• InitialState: Option actually used when
Model.InitialState = 'auto'.

• N4Weight: For n4sid estimates, or estimates that have been
initialized by n4sid: the actual value of N4Weight used.

• N4Horizon: For n4sid estimates, or estimates that have been
initialized by n4sid: the actual value of N4Horizon used. See n4sid
and Algorithm Properties.

idfrd Case

If the idfrd model is obtained from an estimated parametric model,

g = idfrd(Model)

g.EstimationInfo is the same as Model.EstimationInfo as described
above.

For an idfrd model that has been estimated from etfe, spa, or spafdr,
EstimationInfo contains the following fields:
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• Status: Whether the model is estimated or directly constructed.

• Method: etfe, spa, or spafdr

• WindowSize: Resolution parameter (or vector) used for the estimation

• DataName, DataLength, DataTs, DataDomain, DataInterSample:
Properties of the estimation data as above.

See Also Algorithm Properties

idpoly

idss
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Purpose Estimate empirical transfer functions and periodograms returning
idfrd object

Syntax g = etfe(data)
g = etfe(data,M,N)

Description etfe estimates the transfer function g of the general linear model

data contains the output-input data and is an iddata object (time or
frequency domain).

g is given as an idfrd object with the estimate of at the
frequencies

w = [1:N]/N*pi/T

The default value of N is 128.

In case data contains a time series (no input channels), g is returned as
the periodogram of y.

When M is specified other than the default value M = [], a smoothing
operation is performed on the raw spectral estimates. The effect of M is
then similar to the effect of M in spa. This can be a useful alternative to
spa for narrowband spectra and systems, which require large values
of M.

When etfe is applied to time series, the corresponding spectral estimate
is normalized in the way that is defined in “Spectrum Normalization
and the Sampling Interval” on page 5-40. Note that this normalization
might differ from the one used by spectrum in the Signal Processing
Toolbox.

If the (input) data is marked as periodic (data.Period = integer) and
contains an even number of periods, the response is computed at the
frequencies k*2*pi/period for k = 0 up to the Nyquist frequency.
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Examples Compare an empirical transfer function estimate to a smoothed spectral
estimate.

ge = etfe(z);
gs = spa(z);
bode(ge,gs)

Generate a periodic input, simulate a system with it, and compare the
frequency response of the estimated model with the true system at the
excited frequency points.

m = idpoly([1 -1.5 0.7],[0 1 0.5]);
u = iddata([],idinput([50,1,10],'sine'));
u.Period = 50;
y = sim(m,u);
me = etfe([y u])
bode(me,'b*',m)

Algorithm The empirical transfer function estimate is computed as the ratio of the
output Fourier transform to the input Fourier transform, using fft.
The periodogram is computed as the normalized absolute square of the
Fourier transform of the time series.

You obtain the smoothed versions (M less than the length of z) by
applying a Hamming window to the output fast Fourier transform
(FFT) times the conjugate of the input FFT, and to the absolute square
of the input FFT, respectively, and subsequently forming the ratio of the
results. The length of this Hamming window is equal to the number of
data points in z divided by M, plus one.

See Also bode

ffplot

freqresp

idfrd
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nyquist

spa

spafdr
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Purpose Value of nonlinearity estimator at given input

Syntax value = evaluate(nl,x)

Arguments nl
Nonlinearity estimator object.

x
Value at which to evaluate the nonlinearity.

If nl is a single nonlinearity estimator, then x is a 1-by-nx row
vector or an nv-by-nx matrix, where nx is the dimension of the
regression vector input to nl (size(nl)) and nv is the number of
points where nl is evaluated.

If nl is an array of ny nonlinearity estimators, then x is a 1-by-ny
cell array of nv-by-nx matrices.

Description value = evaluate(nl,x) computes the value of a nonlinear estimator
object of type customnet, deadzone, linear, neuralnet, pwlinear,
saturation, sigmoidnet, treepartition, or wavenet.

Example The following syntax evaluates the nonlinearity of an estimated
nonlinear ARX model m:

value = evaluate(m.Nonlinearity,x)

where m.Nonlinearity accesses the nonlinearity estimator of the
nonlinear ARX model.

See Also idnlarx

idnlhw
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Purpose Concatenate frequency-domain signals in idfrd and iddata objects

Syntax Mc = fcat(M1,M2,...Mn)

Description M1, M2, etc., are all idfrd objects or iddata frequency-domain objects.

Mc is the corresponding object obtained by concatenation of the
responses at all the frequencies in Mk.

Note that for iddata objects, this is the same as vertical concatenation
(vertcat).

Mc = [M1;M2;..;Mn].

See Also fselect

iddata

idfrd
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Purpose Identify possible feedback in iddata data

Syntax [fbck,fbck0,nudir] = feedback(Data)

Description Data is an iddata set with Ny outputs and Nu inputs.

fbck is an Ny-by-Nu matrix indicating the feedback. The ky,ku entry
is a measure of feedback from output ky to input ku. The value is a
probability P in percent. Its interpretation is that if the hypothesis that
there is no feedback from output ky to input ku were tested at the level
P, it would have been rejected. An intuitive but technically incorrect
way of thinking about this is to see P as “the probability of feedback.”
Often only values above 90% are taken as indications of feedback. When
fbck is calculated, direct dependence at lag zero between u(t) and y(t) is
not regarded as a feedback effect.

fbck0: Same as fbck, but direct dependence at lag 0 between u(t) and
y(t) is viewed as feedback effect.

nudir: A vector containing those input numbers that appear to have a
direct effect on some outputs, that is, no delay from input to output.

See Also advice

iddata

idmodel
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Purpose Plot frequency response and spectra

Syntax ffplot(m)
[mag,phase,w] = ffplot(m)
[mag,phase,w,sdmag,sdphase] = ffplot(m)
ffplot(m1,m2,m3,...,w)
ffplot(m1,'PlotStyle1',m2,'PlotStyle2',...)
ffplot(m1,m2,m3,..'sd',sd,'mode',mode,'ap',ap)

Description This function has exactly the same syntax as bode. The only difference
is that it gives graphs with linear frequency scales and Hz as the
frequency unit.

See Also bode

etfe

freqresp

idfrd

nyquist

spa

spafdr
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Purpose Transform iddata object to frequency domain

Syntax Datf = fft(Data)
Datf = fft(Data,N)
Datf = fft(Data,N,'complex')

Description If Data is a time-domain iddata object with real-valued signals and with
constant sampling interval Ts, Datf is returned as a frequency-domain
iddata object with the frequency values equally distributed from
frequency 0 to the Nyquist frequency. Whether the Nyquist frequency
actually is included or not depends on the signal length (even or odd).
Note that the FFTs are normalized by dividing each transform by the
square root of the signal length. That is in order to preserve the signal
power and noise level.

In the default case, the length of the transformation is determined by
the signal length. A second argument N will force FFT transformations
of length N, padding with zeros if the signals in Data are shorter and
truncating otherwise. Thus the number of frequencies in the real signal
case will be N/2 or (N+1)/2. If Data contains several experiments, N can
be a row vector of corresponding length.

For real signals, the default is that Datf only contains nonnegative
frequencies. For complex-valued signals, negative frequencies are also
included. To enforce negative frequencies in the real case, add a last
argument, 'Complex'.

See Also iddata

ifft
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Purpose Convert idfrd objects to frequency-response LTI models of Control
System Toolbox

Syntax sys = frd(mod)

Description mod is an idfrd object. sys is returned as an frd object.

The fields Frequency, ResponseData, Units, Ts, InputDelay,
InputName, OutputName and Notes in mod are transferred to
sys. The remaining fields (SpectrumData, CovarianceData and
NoiseCovariance) are ignored. The command, therefore, cannot be
applied to a time-series idfrd model object.

See Also ss

tf

zpk
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Purpose Compute frequency function for model

Syntax H = freqresp(m)
[H,w,covH] = freqresp(m,w)

Description m is any idmodel or idfrd object.

H = freqresp(m,w) computes the frequency response H of the idmodel
model m at the frequencies specified by the vector w. These frequencies
should be real and in rad/s.

If m has ny outputs and nu inputs, and w contains Nw frequencies, the
output H is an ny-by-nu-by-Nw array such that H(:,:,k) gives the
complex-valued response at the frequency w(k).

For a SISO model, H(:) to obtain a vector of the frequency response.

If w is not specified, a default choice is made based on the dynamics of
the model.

Output Arguments

[H,w,covH] = freqresp(M,w)

also returns the frequencies w and the covariance covH of the
response. covH is a 5-D array where covH(ky,ku,k,:,:) is the
2-by-2 covariance matrix of the response from input ku to output ky
at frequency w(k). The 1,1 element is the variance of the real part,
the 2,2 element is the variance of the imaginary part, and the 1,2
and 2,1 elements are the covariance between the real and imaginary
parts. squeeze(covH(ky,ku,k,:,:)) gives the covariance matrix of
the corresponding response.

If m is a time series (no input channels), H is returned as the (power)
spectrum of the outputs, an ny-by-ny-by-Nw array. Hence H(:,:,k) is
the spectrum matrix at frequency w(k). The element H(k1,k2,k) is the
cross spectrum between outputs k1 and k2 at frequency w(k). When k1
= k2, this is the real-valued power spectrum of output k1.
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covH is then the covariance of the estimated spectrum H, so that
covH(k1,k1,k) is the variance of the power spectrum estimate of
output k1 at frequency W(k). No information about the variance of the
cross spectra is normally given; that is, covH(k1,k2,k) = 0 for k1 is
not equal to k2.)

If the model m is not a time series, use freqresp(m('n')) to obtain the
spectrum information of the noise (output disturbance) signals.

Note that idfrd computes the same information as freqresp, and
stores it in the idfrd object.

See Also bode

etfe

ffplot

idfrd

nyquist

spa

spafdr
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Purpose Akaike Final Prediction Error for estimated model

Syntax fp = fpe(Model1,Model2,Model3,...)

Description Model is any estimated idmodel (idarx, idgrey, idpoly, idproc, idss).

fp is returned as a row vector containing the values of the Akaike Final
Prediction Error (FPE) for the different models. This is defined as
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where V is the loss function, d is the number of estimated parameters,
and N is the number of estimation data.

The loss function V is
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where θ̂N represents the estimated parameters.

FPE can be negative when the number of estimated parameters exceeds
the number of data samples, which can occur for models with multiple
outputs. For models with multiple output, the assumption that d/N is
small is not valid. In when this assumption is not valid, use AIC instead.

References Sections 7.4 and 16.4 in Ljung (1999).

See Also EstimationInfo

aic
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Purpose Select frequencies from idfrd object

Syntax idfm = fselect(idf,index)
idfm = fselect(idf,Fmin,Fmax)

Description idf is any idfrd object. index is a row vector of frequency indices, so
that idfm is the idfrd object that contains the response at frequencies
idf.Frequency(Index).

If Fmin and Fmax are specified, idfm contains responses at frequencies
between Fmin and Fmax.

Note that the operation is the same as dat(index) for an iddata object.

Examples Select every fifth frequency:

idfm = fselect(idf,5:5:100)

Select the response in the third quadrant:

ph = angle(squeeze(idf.response));
idfm = fselect(idf,find(ph>-pi & ph <-pi/2))

See Also fcat

iddata

idfrd
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Purpose Query properties of data and model objects

Syntax Value = get(m,'PropertyName')
get(m)
Struct = get(m)

Description value = get(m,'PropertyName') returns the current value of the
property PropertyName of the iddata object or idfrd object, or idmodel
object (idgrey, idarx, idpoly, idss), or idnlgrey, idnlarx, or idnlhw
model object.

The string 'PropertyName' can be the full property name (for
example, 'SSParameterization') or any unambiguous case-insensitive
abbreviation (for example, 'ss').

Struct = get(m) converts the object m into a standard MATLAB
structure with the property names as field names and the property
values as field values.

Without a left-hand argument

get(m)

displays all properties of m and their values.

Remarks An alternative to the syntax

Value = get(m,'PropertyName')

is the structure-like referencing

Value = m.PropertyName

See Also Algorithm Properties

idarx

idfrd
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idgrey

idnlarx

idnlgrey

idnlhw

idpoly

idproc

idss
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Purpose Retrieve experiment(s) from multiple-experiment iddata objects

Syntax d1 = getexp(data,ExperimentNumber)
d1 = getexp(data,ExperimentName)

Description data is an iddata object that contains several experiments. d1
is another iddata object containing the indicated experiment(s).
The reference can either be by ExperimentNumber, as in
d1 = getexp(data,3) or d1 = getexp(data,[4 2]); or by
ExperimentName, as in d1 = getexp(data,'Period1') or
d1 = getexp(data,{'Day1','Day3'}).

See merge (iddata) and iddata for how to create multiple-experiment
data objects.

You can also retrieve the experiments using a fourth subscript, as in d1
= data(:,:,:,ExperimentNumber). Type help iddata/subsref for
details on this.
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Purpose Values of idnlgrey model initial states

Syntax getinit(model)
getinit(model,prop)

Arguments model
Name of the idnlgrey model object.

Property
Name of the InitialStates model property field, such as 'Name',
'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.

Default: 'Value'.

Description getinit(model) gets the initial-state values in the 'Value' field of the
InitialStates model property.

getinit(model,prop) gets the initial-state values of the prop field
of the InitialStates model property. prop can be 'Name', 'Unit',
'Value', 'Minimum', 'Maximum', and 'Fixed'.

The returned values are an Nx-by-1 cell array of values, where Nx is
the number of states.

See Also getpar

idnlgrey

setinit

setpar
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Purpose Parameter values and properties of idnlgrey model parameters

Syntax getpar(model)
getpar(model,prop)

Arguments model
Name of the idnlgrey model object.

Property
Name of the Parameters model property field, such as 'Name',
'Unit', 'Value', 'Minimum', or 'Maximum'.

Default: 'Value'.

Description getpar(model) gets the model parameter values in the 'Value' field of
the Parameters model property.

getpar(model,prop) gets the model parameter values in the prop
field of the Parameters model property. prop can be 'Name', 'Unit',
'Value', 'Minimum', and 'Maximum'.

The returned values are an Np-by-1 cell array of values, where Np is
the number of parameters.

See Also getinit

idnlgrey

setinit

setpar
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Purpose Returns names of standard or custom regressors in nonlinear ARX
model

Syntax getreg(model)
getreg(model,subset)
R = getreg(model,subset)

Arguments model
Name of the idnlarx model object.

subset
Has one of the following values: 'all', 'input', 'output',
'standard', 'custom', 'linear', and 'nonlinear'.

Description getreg(model) returns the regressor expressions for all of the
regressors in the nonlinear ARX model.

getreg(model,subset) returns the regressor expressions for a
specified subset of the regressors, as follows:

• 'all' — All regressors.

• 'input' — Input regressors only.

• 'output' — Output regressors only.

• 'standard' — Standard regressors only.

• 'custom' — Custom regressors only.

• 'linear' — Regressors that are not used in the in the nonlinear
block.

• 'nonlinear' — Regressors used in the nonlinear block.

Note You can use 'nl' as an abbreviation for 'nonlinear'.
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R = getreg(model,subset) returns a cell array of strings of the
regressors for a specified subset of the regressors. For multiple-output,
returns a cell array of cell arrays.

See Also addreg

customreg

nlarx

polyreg
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Purpose Class for storing multioutput ARX polynomials and estimated impulse-
and step-response

Syntax m = idarx(A,B,Ts)
m = idarx(A,B,Ts,'Property1',Value1,...,,'PropertyN',ValueN)

Description idarx creates an object containing parameters that describe the general
multiinput, multioutput model structure of ARX type.

Here and are matrices of dimensions ny-by-ny and ny-by-nu,
respectively. (ny is the number of outputs, that is, the dimension of the
vector , and nu is the number of inputs.)

The arguments A and B are 3-D arrays that contain the A matrices and
the B matrices of the model in the following way.

A is an ny-by-ny-by-(na+1) array such that

A(:,:,k+1) = Ak
A(:,:,1) = eye(ny)

Similarly B is an ny-by-nu-by-(nb+1) array with

B(:,:,k+1) = Bk

Note that A always starts with the identity matrix, and that delays in
the model are defined by setting the corresponding leading entries in B
to zero. For a multivariate time series take B = [].

The optional property NoiseVariance sets the covariance matrix of
the driving noise source in the model above. The default value is
the identity matrix.

The argument Ts is the sampling interval. Note that continuous-time
models (Ts = 0) are not supported.
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The use of idarx is twofold. You can use it to create models that are
simulated (using sim) or analyzed (using bode, pzmap, etc.). You can
also use it to define initial value models that are further adjusted to
data (using arx). The free parameters in the structure are consistent
with the structure of A and B; that is, leading zeros in the rows of B are
regarded as fixed delays, and trailing zeros in A and B are regarded as a
definition of lower-order polynomials. These zeros are fixed, while all
other parameters are free.

For a model with one output, ARX models can be described both as
idarx and idpoly models. The internal representation is different,
however.

idarx
Properties

• A, B: The A and B polynomials as 3-D arrays, described above

• dA, dB: The standard deviations of A and B. Same format as A and B.
Cannot be set.

• na, nb, nk: The orders and delays of the model. na is an ny-by-ny
matrix whose i-j entry is the order of the polynomial corresponding to
the i-j entry of A. Similarly nb is an ny-by-nu matrix with the orders
of B. nk is also an ny-by-nu matrix, whose i-j entry is the delay from
input j to output i, that is, the number of leading zeros in the i-j
entry of B.

• InitialState: This describes how the initial state (initial values
in filtering, etc.) should be handled. For time-domain applications,
this is typically handled by starting the filtering when all data are
available. For frequency-domain data, you must estimate initial
states. The possible values of InitialState are 'zero', 'estimate',
and 'auto' (which makes a data-dependent choice between zero
and estimate).

In addition to these properties, idarx objects also have all the properties
of the idmodel object. See idmodel, Algorithm Properties, and
EstimationInfo.

12-99



idarx

Note that you can set and retrieve all properties either with the set and
get commands or by subscripts. Autofill applies to all properties and
values, and they are case insensitive.

For a complete list of property values, use get(m). To see possible value
assignments, use set(m). See also idprops idarx.

Examples Simulate a second-order ARX model with one input and two outputs,
and then estimate a model using the simulated data.

A = zeros(2,2,3);
B = zeros(2,1,3)
A(:,:,1) =eye(2);
A(:,:,2) = [-1.5 0.1;-0.2 1.5];
A(:,:,3) = [0.7 -0.3;0.1 0.7];
B(:,:,2) = [1;-1];
B(:,:,3) = [0.5;1.2];
m0 = idarx(A,B,1);
u = iddata([],idinput(300));
e = iddata([],randn(300,2));
y = sim(m0,[u e]);
m = arx([y u],[[2 2;2 2],[2;2],[1;1]]);

See Also arx

arxdata

idmodel

idpoly
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Purpose Class for storing time-domain and frequency-domain data

Syntax data = iddata(y,[],Ts)
data = iddata(y,u,Ts)
data = iddata(y,u,Ts,'Frequency',W)
data = iddata(y,u,Ts,'P1',V1,...,'PN',VN)
data = iddata(idfrd_object)

Arguments y
Name of MATLAB variable that represents the output signal from
the dynamic system. Sets the OutputData iddata property. For a
single-output system, this is a column vector. For a multioutput
system with Ny output channels and NT time samples, this is an
NT-by-Ny matrix.

Note Output data must be in the same domain as input data.

u
Name of MATLAB variable that represents the input signal for
the dynamic system. Sets the InputData iddata property. For a
single-input system, this is a column vector. For a multioutput
system with Nu output channels and NT time samples, this is an
NT-by-Nu matrix.

Note Input data must be in the same domain as output data.

Ts
Time interval between successive data samples in seconds.
Default value is 1. For continuous-time data in the frequency
domain, set Ts to 0.

'P1',V1,...,'PN',VN
Pairs of iddata property names and property values.
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idfrd_object
Name of idfrd data object.

Description data = iddata(y,[],Ts) creates an iddata object for time-series data,
containing a time-domain output signal y and an empty input signal [],
respectively. Ts specifies the sampling interval of the experimental data.

data = iddata(y,u,Ts) creates an iddata object containing a
time-domain output signal y and input signal u, respectively. Ts
specifies the sampling interval of the experimental data.

data = iddata(y,u,Ts,'Frequency',W) creates an iddata object
containing a frequency-domain output signaly and input signal u,
respectively.Ts specifies the sampling interval of the experimental data.
W specifies the iddata property 'frequency' as a vector of frequencies.

data = iddata(y,u,Ts,'P1',V1,...,'PN',VN) creates an iddata
object containing a time-domain or frequency-domain output signal y
and input signal u, respectively. Ts specifies the sampling interval of
the experimental data. 'P1',V1,...,'PN',VN are property-value pairs,
as described in “iddata Properties” on page 12-102.

data = iddata(idfrd_object) transforms an idfrd object to a
frequency-domain iddata object.

iddata
Properties

The following table describes iddata object properties and their
values. These properties are specified as property-value arguments
'P1',V1,...,'PN',VN’ in the iddata constructor, or you can set them
using the set command or dot notation. In the list below, N denotes
the number of data samples in the input and output signals, ny is the
number of output channels, nu is the number of input channels, and
Ne is the number of experiments.

Tip Property names are not case sensitive. You do not need to type the
entire property name. However, the portion you enter must by enough
to uniquely identify the property.
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Property Name Description Value

Domain Specifies whether the data
is in the time domain or
frequency domain.

• 'Frequency' —
Frequency-domain data.

• 'Time' (Default) —
Time-domain data.

ExperimentName Name of each data set
contained in the iddata
object.

For Ne experiments, a
1-by-Ne cell array of strings.
Each cell contains the
name of the corresponding
experiment. Default names
are {'Exp1', 'Exp2',...}.

Frequency (Frequency-domain data
only) Frequency values
for defining the Fourier
Transforms of the signals.

For a single experiment, this
is an N-by-1 vector. For Ne
experiments, a 1-by-Ne cell
array and each cell contains
the frequencies of the
corresponding experiment.

InputData Name of MATLAB variable
that stores the input signal
for the dynamic system.

For nu input channels and
N data samples, this is an
N-by-nu matrix.

InputName Specifies the names of
individual input channels.

Cell array of length
nu-by-1 contains the
name string of each input
channel. Default names are
{'u1';'u2';...}.

InputUnit Specifies the units of each
input channel.

Cell array of length nu-by-1.
Each cell contains a string
that specifies the units of
each input channel.
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Property Name Description Value

InterSample Specifies the behavior of
the input signals between
samples for transformations
between discrete-time and
continuous-time.

For a single experiment:

• zoh— (Default)
Zero-order hold
maintains a
piecewise-contant input
signal between samples.

• foh— First-order
hold maintains a
piecewise-linear input
signal between samples.

• bl— Band-limited
behavior specifies that
the continuous-time
input signal has zero
power above the Nyquist
frequency.

For Ne experiments,
InterSample is an nu-by-Ne
cell array. Each cell
contains one of these
values corresponding to
each experiment.

Name Name of the data set. Text string.

Notes Comments about the data
set.

Text string.

OutputData Name of MATLAB variable
that stores the output signal
from the dynamic system.

For ny output channels and
N samples, this is an N-by-ny
matrix.
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Property Name Description Value

OutputName For a multioutput system,
specifies the names of
individual output channels.

Cell array of length
ny-by-1 contains the name
string of each output
channel. Default names are
{'y1';'y2';...}.

OutputUnit Specifies the units of each
output channel.

For ny output channels, a
cell array of length ny-by-1.
Each cell contains a string
that specifies the units of
the corresponding output
channel.

Period Period of the input signal. (Default) For a nonperiodic
signal, set to inf. For
a multiinput signal, this
is an nu-by-1 vector and
the kth entry contains the
period of the kth input.
For Ne experiments, this
is a 1-by-Ne cell array and
each cell contains a scalar
or vector of periods for the
corresponding experiment.

SamplingInstants (Time-domain data only)
The time values in the time
vector calculated from the
properties Tstart and Ts.

For a single experiment,
this is an N-by-1 vector.
For Ne experiments, this
is a 1-by-Ne cell array
and each cell contains the
sampling instants of the
corresponding experiment.

TimeUnit (Time-domain data only)
Time unit.

A string that specifies the
time unit for the time vector.
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Property Name Description Value

Ts Time interval between
successive data samples
in seconds. Must be
specified for both time-
and frequency-domain data.
For frequency-domain, it
is used to compute Fourier
transforms of the signals
as discrete-time Fourier
transforms (DTFT) with the
indicated sampling interval.

Note System Identification
Toolbox requires that your
data be uniformly sampled.

Default value is 1. For
continuous-time data in
the frequency domain,
set to 0; the inputs and
outputs are interpreted as
continuous-time Fourier
transforms of the signals.
Note that Ts is essential also
for frequency-domain data,
for proper interpretation of
how the Fourier transforms
were computed: They are
interpreted as discrete-time
Fourier transforms
(DTFT) with the indicated
sampling interval.. For
multiple-experiment data,
Ts is a 1-by-Ne cell array
and each cell contains the
sampling interval of the
corresponding experiment.

Tstart (Time-domain data only)
Specifies the start time of
the time vector.

For a single experiment,
this is a scalar. For
Ne experiments, Ts is a
1-by-Ne cell array and each
cell contains the sampling
interval of the corresponding
experiment.
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Property Name Description Value

Units (Frequency-domain data
only) Frequency unit.

Specified as rad/s or Hz.For
multiexperiement data with
Ne experiments, Units is a
1-by-Ne cell array and each
cell contains the frequency
unit for each experiment.

UserData Additional comments. Text string.

See Also advice

detrend

fcat

getexp

idfilt

idfrd

plot

resample

size
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Purpose Open System Identification Tool GUI

Syntax ident
ident(session,path)

Description ident by itself opens the main interface window, or brings it forward
if it is already open.

session is the name of a previous session with the graphical user
interface, and typically has extension.sid. The path argument is the
complete path for the location of this file. If the session file is on the
MATLABPATH, path can be omitted.

When the session is specified, the interface will open with this session
active. Typing ident(session,path) on the MATLAB command line,
when the interface is active, will load and open the session in question.

For more information about the graphical user interface, see Chapter 2,
“Working with the System Identification Tool GUI”.

Examples ident('iddata1.sid')
ident('mydata.sid','\matlab\data\cdplayer\')

See Also midprefs
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Purpose Filter data using user-defined passbands, general filters, or Butterworth
filters

Syntax Zf = idfilt(Z,filter)
Zf = idfilt(Z,filter,causality)
Zf = idfilt(Z,filter,'FilterOrder',NF)

Description Z is the data, defined as an iddata object. Zf contains the filtered data
as an iddata object. The filter can be defined in three ways:

• As an explicit system that defines the filter,

filter = idm or filter = {num,den} or filter = {A,B,C,D}

idm can be any SISO idmodel or LTI model object. Alternatively the
filter can be defined as a cell array {A,B,C,D} of SISO state-space
matrices or as a cell array {num,den} of numerator/denominator
filter coefficients.

• As a vector or matrix that defines one or several passbands,

filter=[[wp1l,wp1h];[ wp2l,wp2h]; ....;[wpnl,wpnh]]

The matrix is n-by-2, where each row defines a passband in rad/s. A
filter is constructed that gives the union of these passbands. For
time-domain data, it is computed as cascaded Butterworth filters or
order NF. The default value of NF is 5.

For example, to define a stopband between ws1 and ws2, use

filter = [0 ws1; ws2,Nyqf]

where Nyqf is the Nyquist frequency.

• For frequency-domain data, only the frequency response of the filter
can be specified:

filter = Wf
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Here Wf is a vector of possibly complex values that define the filter’s
frequency response, so that the inputs and outputs at frequency
Z.Frequency(kf) are multiplied by Wf(kf). Wf is a column vector
of length = number of frequencies in Z. If the data object has several
experiments, Wf is a cell array of length = # of experiments in Z.

For time-domain data, the filtering is carried out in the time domain
as causal filtering as default. This corresponds to a last argument
causality = 'causal'. With causality = 'noncausal', a noncausal,
zero-phase filter is used for the filtering (corresponding to filtfilt
in the Signal Processing Toolbox).

For frequency-domain data, the signals are multiplied by the frequency
response of the filter. With the filters defined as passband, this gives
ideal, zero-phase filtering (“brickwall filters”). Frequencies that have
been assigned zero weight by the filter (outside the passband, or via the
frequency response) are removed from the iddata object Zf.

It is common practice in identification to select a frequency band where
the fit between model and data is concentrated. Often this corresponds
to bandpass filtering with a passband over the interesting breakpoints
in a Bode diagram. For identification where a disturbance model is
also estimated, it is better to achieve the desired estimation result by
using the property 'Focus' (see Algorithm Properties) than just to
prefilter the data. The proper values for 'Focus' are the same as the
argument filter in idfilt.

Algorithm The Butterworth filter is the same as butter in the Signal Processing
Toolbox. Also, the zero-phase filter is equivalent to filtfilt in that
toolbox.

References Ljung (1999), Chapter 14.

See Also Algorithm Properties

iddata
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Purpose Class for storing frequency-response or spectral-analysis data

Syntax h = idfrd(Response,Freq,Ts)
h = idfrd(Response,Freq,Ts,

'CovarianceData',Covariance, ...
'SpectrumData',Spec,

'NoiseCovariance',Speccov,'P1', ...
V1,'PN',

VN)
h = idfrd(mod)
h = idfrd(mod,Freqs)

Description h = idfrd(Response,Freq,Ts)
h = idfrd(Response,Freq,Ts,'CovarianceData',Covariance, ...
'SpectrumData',Spec,'NoiseCovariance',Speccov,'P1', ...
V1,'PN',VN)

h = idfrd(mod)
h = idfrd(mod,Freqs)

idfrd creates the idfrd model object.

For a model

stores the transfer function estimate G

as well as the spectrum of the additive noise ( ) at the output

where is the estimated variance of e(t), and T is the sampling interval.

Creating idfrd from Given Responses

Response is a 3-D array of dimension ny-by-nu-by-Nf, with ny being
the number of outputs, nu the number of inputs, and Nf the number of
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frequencies (that is, the length of Freqs). Response(ky,ku,kf) is thus
the complex-valued frequency response from input ku to output ky at
frequency ω=Freqs(kf). When defining the response of a SISO system,
Response can be given as a vector.

Freqs is a column vector of length Nf containing the frequencies of the
response.

Ts is the sampling interval. T = 0 means a continuous-time model.

Covariance is a 5-D array containing the covariance of the frequency
response. It has dimension ny-by-nu-by-Nf-by-2-by-2. The structure is
such that Covariance(ky,ku,kf,:,:) is the 2-by-2 covariance matrix
of the response Response(ky,ku,kf). The 1-1 element is the variance
of the real part, the 2-2 element is the variance of the imaginary part,
and the 1-2 and 2-1 elements are the covariance between the real and
imaginary parts. squeeze(Covariance(ky,ku,kf,:,:)) thus gives the
covariance matrix of the corresponding response.

The information about spectrum is optional. The format is as follows:

spec is a 3-D array of dimension ny-by-ny-by-Nf, such that
spec(ky1,ky2,kf) is the cross spectrum between the noise at output
ky1 and the noise at output ky2, at frequency Freqs(kf). When ky1 =
ky2 the (power) spectrum of the noise at output ky1 is thus obtained.
For a single-output model, spec can be given as a vector.

speccov is a 3-D array of dimension ny-by-ny-by-Nf, such that
speccov(ky1,ky1,kf) is the variance of the corresponding power
spectrum. Normally, no information is included about the covariance of
the nondiagonal spectrum elements.

If only SpectrumData is to be packaged in the idfrd object, set
Response = [].

Creating idfrd from a Given Model

idfrd can also be computed from a given model mod (defined as any
idmodel object).

If the frequencies Freqs are not specified, a default choice is made based
on the dynamics of the model mod.
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If mod has InputDelay different from zero, these are appended as phase
lags, and h will then have an InputDelay of 0.

The estimated covariances are computed using the Gauss approximation
formula from the uncertainty information in mod. For models with
complicated parameter dependencies, numerical differentiation is
applied. The step sizes for the numerical derivatives are determined
by nuderst.

Frequency responses for submodels can be obtained by the standard
subreferencing, h = idfrd(m(2,3)). See idmodel. In particular,
h = idfrf(m('measured')) gives an h that just contains the
ResponseData (G) and no spectra. Also h = idfrd(m('noise')) gives
an h that just contains SpectrumData.

The idfrd models can be graphed with bode, ffplot, and nyquist,
which all accept mixtures of idmodel and idfrd models as arguments.
Note that spa, spafdr, and etfe return their estimation results as
idfrd objects.

idfrd
Properties

• ResponseData: 3-D array of the complex-valued frequency response
as described above. For SISO systems use Response(1,1,:) to
obtain a vector of the response data.

• Frequency: Column vector containing the frequencies at which the
responses are defined.

• CovarianceData: 5-D array of the covariance matrices of the
response data as described abfove.

• SpectrumData: 3-D array containing power spectra and cross spectra
of the output disturbances (noise) of the system.

• NoiseCovariance: 3-D array containing the variances of the power
spectra, as explained above.

• Units: Unit of the frequency vector. Can assume the values 'rad/s'
and 'Hz'.
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• Ts: Scalar denoting the sampling interval of the model whose
frequency response is stored. 'Ts' = 0 means a continuous-time
model.

• Name: An optional name for the object.

• InputName: String or cell array containing the names of the input
channels. It has as many entries as there are input channels.

• OutputName: Correspondingly for the output channels.

• InputUnit: Units in which the input channels are measured. It has
the same format as 'InputName'.

• OutputUnit: Correspondingly for the output channels.

• InputDelay: Row vector of length equal to the number of input
channels. Contains the delays from the input channels. These should
thus be appended as phase lags when the response is calculated.
This is done automatically by freqresp, bode, ffplot, and nyquist.
Note that if the idfrd is calculated from an idmodel, possible input
delays in that model are converted to phase lags, and the InputDelay
of the idfrd model is set to zero.

• Notes: An arbitrary field to store extra information and notes about
the object.

• UserData: An arbitrary field for any possible use.

• EstimationInfo: Structure that contains information about the
estimation process that is behind the frequency data. It contains the
following fields (see also the reference page for EstimationInfo).

- Status: Gives the status of the model, for example, 'Not
estimated'.

- Method: The identification routine that created the model.

- WindowSize: If the model was estimated by spa, spafdr, or etfe,
the size of window (input argument M, the resolution parameter)
that was used. This is scalar or a vector.
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- DataName: Name of the data set from which the model was
estimated.

- DataLength: Length of this data set.

Note that you can set or retrieve all properties either with the set and
get commands or by subscripts. Autofill applies to all properties and
values, and these are case insensitive:

h.ts = 0
loglog(h.fre,squeeze(h.spe(2,2,:)))

For a complete list of property values, use get(m). To see possible value
assignments, use set(m). See also idprops idfrd.

SubreferencingThe different channels of the idfrd are retrieved by subreferencing.

h(outputs,inputs)

h(2,3) thus contains the response data from input channel 3 to output
channel 2, and, if applicable, the output spectrum data for output
channel 2. The channels can also be referred to by their names, as in
h('power',{'voltage', 'speed'}).

h('m')

contains the information for measured inputs only, that is, just
ResponseData, while

h('n')

('n' for 'noise') just contains SpectrumData.

Horizontal
Concatenation

Adding input channels,

h = [h1,h2,...,hN]
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creates an idfrd model h, with ResponseData containing all the input
channels in h1,...,hN. The output channels of hk must be the same, as
well as the frequency vectors. SpectrumData is ignored.

Vertical
Concatenation

Adding output channels,

h = [h1;h2;... ;hN]

creates an idfrd model h with ResponseData containing all the output
channels in h1, h2,...,hN. The input channels of hk must all be the
same, as well as the frequency vectors. SpectrumData is also appended
for the new outputs. The cross spectrum between output channels is
then set to zero.

Converting
to iddata

You can convert an idfrd object to a frequency-domain iddata object by

Data = iddata(Idfrdmodel)

See iddata.

Examples Compare the results from spectral analysis and an ARMAX model.

m = armax(z,[2 2 2 1]);
g = spa(z)
g = spafdr(z,[],{0,10})
bode(g,m)

Compute separate idfrd models, one containing the frequency function
and the other the noise spectrum.

g = idfrd(m('m'))
phi = idfrd(m('n'))

See Also bode

etfe
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ffplot

freqresp

nyquist

spa

spafdr

12-117



idgrey

Purpose Class for storing linear grey-box models

Syntax m = idgrey(MfileName,ParameterVector,CDmfile)
m = idgrey(MfileName,ParameterVector,CDmfile,FileArgument,Ts,...
'Property1',Value1,...,'PropertyN',ValueN)

Description The function idgrey is used to create arbitrarily parameterized
state-space models as idgrey objects.

MfileName is the name of an M-file that defines how the state-space
matrices depend on the parameters to be estimated. The format of this
M-file is given by

[A,B,C,D,K,X0] = mymfile(pars,Tsm,Auxarg)

and is further discussed below.

ParameterVector is a column vector of the nominal/initial parameters.
Its length must be equal to the number of free parameters in the model
(that is, the argument pars in the example below).

The argument CDmfile describes how the user-written M-file handles
continuous and discrete-time models. It takes the following values:

• CDmfile = 'cd': The M-file returns the continuous-time state-space
matrices when called with the argument Tsm = 0. When called with
a value Tsm > 0, the M-file returns the discrete-time state-space
matrices, obtained by sampling the continuous-time system with
sampling interval Tsm. The M-file must consequently in this case
include the sampling procedure.

• CDmfile = 'c'. The M-file always returns the continuous-time
state-space matrices, no matter the value of Tsm. In this case the
toolbox’s estimation routines will provide the sampling when you are
fitting the model to discrete-time data.

• CDmfile = 'd'. The M-file always returns discrete-time state-space
matrices that may or may not depend on Tsm.
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The argument FileArgument corresponds to the auxiliary argument
Auxarg in the user-written M-file. It can be used to handle several
variants of the model structure, without your having to edit the M-file.
If it is not used, enter FileArgument = []. (Default.)

Ts denotes the sampling interval of the model. Its default value is Ts =
0, that is, a continuous-time model.

The idgrey object is a child of idmodel. Therefore any idmodel
properties can be set as property name/property value pairs in the
idgrey command. They can also be set by the command set, or by
subassignment, as in

m.InputName = {'speed','voltage'}
m.FileArgument = 0.23

There are also two properties, DisturbanceModel and InitialState,
that can be used to affect the parameterizations of K and X0, thus
overriding the outputs from the M-file.

idgrey
Properties

• MfileName: Name of the user-written M-file.

• CDmfile: How this file handles continuous and discrete-time models
depending on its second argument, T.

- CDmfile = 'cd' means that the M-file returns the continuous-time
state-space model matrices when the argument T = 0, and the
discrete-time model, obtained by sampling with sampling interval
T, when T > 0.

- CDmfile = 'c' means that the M-file always returns
continuous-time model matrices, no matter the value of T.

- CDmfile = 'd' means that the M-file always returns discrete-time
model matrices that may or may not depend on the value of T.

• FileArgument: Possible extra input arguments to the user-written
M-file.

• DisturbanceModel: Affects the parameterization of the K matrix. It
can assume the following values:
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- 'Model': This is the default. It means that the K matrix obtained
from the user-written M-file is used.

- 'Estimate': The K matrix is treated as unknown and all its
elements are estimated as free parameters.

- 'Fixed': The K matrix is fixed to a given value.

- 'None': The K matrix is fixed to zero, thus producing an
output-error model.

Note that in the three last cases the output K from the user-written
M-file is ignored. The estimated/fixed value is stored internally and
does not change when the model is sampled, resampled, or converted
to continuous time. Note also that this estimated value is tailored
only to the sampling interval of the data.

• InitialState: Affects the parameterization of the X0 vector. It can
assume the following values:

- 'Model': This is the default. It means that the X0 vector is
obtained from the user-written M-file.

- 'Estimate': The X0 matrix is treated as unknown and all its
elements are estimated as free parameters.

- 'Fixed': The X0 vector is fixed to a given value.

- 'Backcast': The X0 vector is estimated using a backcast operation
analogous to the idss case.

- 'Auto': Makes a data-dependent choice among 'Estimate',
'Backcast', and 'Model'.

• A, B, C, D, K, and X0: The state-space matrices. For idgrey models, only
'K' and 'X0' can be set; the others can only be retrieved. The set 'K'
and 'X0' are relevant only when DisturbanceModel/InitialState
are Estimate or Fixed.

• dA, dB, dC, dD, dK, and dX0: The estimated standard deviations of the
state-space matrices. These cannot be set, only retrieved.
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In addition, any idgrey object also has all the properties of idmodel.
See Algorithm Properties and the reference page for idmodel.

Note that you can set or retrieve all properties using either the set
and get commands or subscripts. Autofill applies to all properties and
values, and they are case insensitive.

m.fi = 10;
set(m,'search','gn')
p = roots(m.a)

For a complete list of property values, use get(m). To see possible value
assignments, use set(m). See also idprops and idgrey.

M-File
Details

The model structure corresponds to the general linear state-space
structure

Here is the time derivative for a continuous-time model and
for a discrete-time model.

The matrices in this time-discrete model can be parameterized in an
arbitrary way by the vector . Write the format for the M-file as follows:

[A,B,C,D,K,x0] = mymfile(pars,T,Auxarg)

Here the vector pars contains the parameters , and the output
arguments A, B, C, D, K, and x0 are the matrices in the model description
that correspond to this value of the parameters and this value of the
sampling interval T.

T is the sampling interval, and Auxarg is any variable of auxiliary
quantities with which you want to work. (In that way you can change
certain constants and other aspects in the model structure without
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having to edit the M-file.) Note that the two arguments T and Auxarg
must be included in the function head of the M-file, even if they are
not used within the M-file.

Chapter 7, “Estimating Grey-Box Models” contains several examples of
typical M-files that define model structures.

A comment about CDmfile: If a continuous-time model is sought, it
is easiest to let the M-file deliver just the continuous-time model,
that is, have CDmfile = 'c' and rely upon the toolbox’s routines for
the proper sampling. Similarly, if the underlying parameterization is
indeed discrete time, it is natural to deliver the discrete-time model
matrices and let CDmfile = 'd'. If the underlying parameterization
is continuous, but you prefer for some reason to do your own sampling
inside the M-file in accordance with the value of T, then let your
M-file deliver the continuous-time model when called with T = 0, that
is, the alternative CMmfile = 'cd'. This avoids sampling and then
transforming back (using d2c) to find the continuous-time model.

Examples Use the M-file mynoise given in “Linear Grey-Box Models” on page 7-5
to obtain a physical parameterization of the Kalman gain.

mn = idgrey('mynoise',[0.1,-2,1,3,0.2]','d')
m = pem(z,mn)
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Purpose Generate input signals

Syntax u = idinput(N)
u = idinput(N,type,band,levels)
[u,freqs] = idinput(N,'sine',band,levels,sinedata)

Description idinput generates input signals of different kinds, which are typically
used for identification purposes. u is returned as a matrix or column
vector.

For further use in the toolbox, we recommend that you create an iddata
object from u, indicating sampling time, input names, periodicity, and
so on:

u = iddata([],u);

N determines the number of generated input data. If N is a scalar, u is a
column vector with this number of rows.

N = [N nu] gives an input with nu input channels each of length N.

N = [P nu M] gives a periodic input with nu channels, each of length
M*P and periodic with period P.

Default is nu = 1 and M = 1.

type defines the type of input signal to be generated. This argument
takes one of the following values:

• type = 'rgs': Gives a random, Gaussian signal.

• type = 'rbs': Gives a random, binary signal. This is the default.

• type = 'prbs': Gives a pseudorandom, binary signal.

• type = 'sine': Gives a signal that is a sum of sinusoids.

The frequency contents of the signal is determined by the argument
band. For the choices type = 'rs', 'rbs', and 'sine', this argument
is a row vector with two entries
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band = [wlow, whigh]

that determine the lower and upper bound of the passband. The
frequencies wlow and whigh are expressed in fractions of the Nyquist
frequency. A white noise character input is thus obtained for band = [0
1], which is also the default value.

For the choice type = 'prbs',

band = [0, B]

where B is such that the signal is constant over intervals of length 1/B
(the clock period). In this case the default is band = [0 1].

The argument levels defines the input level. It is a row vector

levels = [minu, maxu]

such that the signal u will always be between the values minu and maxu
for the choices type = 'rbs', 'prbs', and 'sine'. For type = 'rgs',
the signal level is such that minu is the mean value of the signal, minus
one standard deviation, while maxu is the mean value plus one standard
deviation. Gaussian white noise with zero mean and variance one is
thus obtained for levels = [-1, 1], which is also the default value.

Some PRBS Aspects

If more than one period is demanded (that is, M > 1), the length of the
data sequence and the period of the PRBS signal are adjusted so that an
integer number of maximum length PRBS periods is always obtained.
If M = 1, the period of the PRBS signal is chosen to that it is longer
than P = N. In the multiinput case, the signals are maximally shifted.
This means P/nu is an upper bound for the model orders that can be
estimated with such a signal.

Some Sine Aspects

In the 'sine' case, the sinusoids are chosen from the frequency grid

freq = 2*pi*[1:Grid_Skip:fix(P/2)]/P
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intersected with pi*[band(1) band(2)]. For Grid_Skip, see below.
For multiinput signals, the different inputs use different frequencies
from this grid. An integer number of full periods is always delivered.
The selected frequencies are obtained as the second output argument,
freqs, where row ku of freqs contains the frequencies of input number
ku. The resulting signal is affected by a fifth input argument, sinedata

sinedata = [No_of_Sinusoids, No_of_Trials, Grid_Skip]

meaning that No_of_Sinusoids is equally spread over the indicated
band. No_of_Trials (different, random, relative phases) are tried until
the lowest amplitude signal is found.

Default: sinedata = [10,10,1];

Grid_Skip can be useful for controlling odd and even frequency
multiples, for example, to detect nonlinearities of various kinds.

Algorithm Very simple algorithms are used. The frequency contents are achieved
for 'rgs' by an eighth-order Butterworth, noncausal filter, using
idfilt. This is quite reliable. The same filter is used for the 'rbs'
case, before making the signal binary. This means that the frequency
contents are not guaranteed to be precise in this case.

For the 'sine' case, the frequencies are selected to be equally spread
over the chosen grid, and each sinusoid is given a random phase. A
number of trials are made, and the phases that give the smallest signal
amplitude are selected. The amplitude is then scaled so as to satisfy
the specifications of levels.

References See Söderström and Stoica (1989), Chapter C5.3. For a general
discussion of input signals, see Ljung (1999), Section 13.3.

Examples Create an input consisting of five sinusoids spread over the whole
frequency interval. Compare the spectrum of this signal with that of its
square. The frequency splitting (the square having spectral support at
other frequencies) reveals the nonlinearity involved:
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u = idinput([100 1 20],'sine',[],[],[5 10 1]);
u = iddata([],u,1,'per',100);
u2 = u.u.^2;
u2 = iddata([],u2,1,'per',100);
ffplot(etfe(u),'r*',etfe(u2),'+')
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Purpose Simulate idmodel objects in Simulink

Syntax idmdlsim

Description Typing idmdlsim launches the Idmodel block in Simulink. By clicking
the block you can specify the idmodel to simulate, whether to include
initial state values, and whether to add noise to the simulation in
accordance with the model’s own noise description.

See Also compare

pe

predict

sim

simsd
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Purpose Superclass for linear models

Description idmodel is an object that the user does not deal with directly. It contains
all the common properties of the model objects idarx, idgrey, idpoly,
idproc, and idss, which are returned by the different estimation
routines.

Basic Use

If you just estimate models from data, the model objects should be
transparent. All parametric estimation routines return idmodel results.

m = arx(Data,[2 2 1])

The model m contains all relevant information. Just typing m will give a
brief account of the model. present(m) also gives information about the
uncertainties of the estimated parameters. get(m) gives a complete list
of model properties.

Most of the interesting properties can be directly accessed by
subreferencing.

m.a
m.da

See the property list obtained by get(m), as well as the property
lists of idgrey, idarx, idpoly, and idss in Chapter 12,
“Functions–Alphabetical List” for more details on this. See also
idprops.

The characteristics of the model m can be directly examined and
displayed by commands like impulse, step, bode, nyquist, and pzmap.
The quality of the model is assessed by commands like compare and
resid. If you have Control System Toolbox, typing view(m) gives access
to various display functions.

To extract state-space matrices, transfer function polynomials, etc., use
the commands arxdata, polydata, tfdata, ssdata, and zpkdata.
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To compute the frequency response of the model, use the commands
idfrd and freqresp.

Creating and Modifying Model Objects

If you want to define a model to use, for example, for simulating data,
you need to use the model creator functions:

• idarx, for multivariable ARX models

• idgrey, for user-defined gray-box state-space models

• idpoly, for single-output polynomial models

• idproc, for simple, continuous-time process models

• idss, for state-space models

If you want to estimate a state-space model with a specific internal
parameterization, you need to create an idss model or an idgrey
model. See the reference pages for these functions.

Dealing with Input and Output Channels

For multivariable models, you construct submodels containing a subset
of inputs and outputs by simple subreferencing. The outputs and input
channels can be referenced according to

m(outputs,inputs)

Use a colon (:) to denote all channels and an empty matrix ([]) to denote
no channels. The channels can be referenced by number or by name.
For several names, you must use a cell array, such as

m3 = m('position',{'power','speed'})

or

m3 = m(3,[1 4])
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Thus m3 is the model obtained from m by looking at the transfer
functions from input numbers 1 and 4 (with input names ’power’ and
’speed’) to output number 3 (with name position).

For a single-output model m,

m4 = m(inputs)

selects the corresponding input channels, and for a single-input model,

m5 = m(outputs)

selects the indicated output channels.

Subreferencing is quite useful, for example, when a plot of just some
channels is desired.

The Noise Channels

The estimated models have two kinds of input channels: the measured
inputs u and the noise inputs e. For a general linear model m, we have

(12-1)

where u is the nu-dimensional vector of measured input channels and e
is the ny-dimensional vector of noise channels. The covariance matrix of
e is given by the property 'NoiseVariance'. Occasionally this matrix
is written in factored form,

This means that e can be written as

where is white noise with identity covariance matrix (independent
noise sources with unit variances).

If m is a time series (nu = 0), G is empty and the model is given by
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For the model m, the restriction to the transfer function matrix G is
obtained by

m1 = m('measured') or just m1 = m('m')

Then e is set to 0 and H is removed.

Analogously,

m2 = m('noise') or just m2 = m('n')

creates a time-series model m2 from m by ignoring the measured input.
That is, m2 describes the signal He.

For a system with measured inputs, bode, step, and other
transformation and display functions deal with the transfer function
matrix G. To obtain or graph the properties of the disturbance model
H, it is therefore important to make the transformations m('n'). For
example,

bode(m('n'))

plots the additive noise spectra according to the model m, while

bode(m)

just plots the frequency responses of G.

To study the noise contributions in more detail, it is useful to convert
the noise channels to measured channels, using the command noisecnv.

m3 = noisecnv(m)

This creates a model m3 with all input channels, both measured u and
noise sources e, treated as measured signals,. That is, m3 is a model
from u and e to y, describing the transfer functions G and H. The
information about the variance of the innovations e is lost. For example,
studying the step response from the noise channels does not take into
consideration how large the noise contributions actually are.
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To include that information, e should first be normalized, , so
that becomes white noise with an identity covariance matrix.

m4 = noisecnv(m,'Norm')

This creates a model m4 with u and treated as measured signals.

For example, the step responses from v to y will now reflect the typical
size of the disturbance influence because of the scaling by L. In both
cases, the previous noise sources that have become regular inputs will
automatically get input names that are related to the corresponding
output. The unnormalized noise sources e have names like 'e@ynam1'
(noise e at output channel ynam1), while the normalized sources v are
called 'v@ynam1'.

Retrieving Transfer Functions

The functions that retrieve transfer function properties, ssdata,
tfdata, and zpkdata, will thus work as follows for a model (Equation
12-1) with measured inputs. (fcn is ssdata, tfdata, or zpkdata.)

fcn(m) returns the properties of G (ny outputs and nu inputs).

fcn(m('n')) returns the properties of the transfer function H (ny
outputs and ny inputs).

fcn(noisec nv(m,'Norm')) returns the properties of the transfer
function [G HL} (ny outputs and ny+nu inputs). Analogously,

m1 = m('n'). fcn(noisecnv(m1,'Norm'))

returns the properties of the transfer function HL (ny outputs and ny
inputs).

If m is a time-series model, fcn(m) returns the properties of H, while

fcn(noisecnv(m,'Norm'))
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returns the properties of HL.

Note that the estimated covariance matrix NoiseVariance itself is
uncertain. This means that the uncertainty information about H is
different from that of HL.

idmodel
Properties

In the list below, ny is the number of output channels, and nu is the
number of input channels:

• Name: An optional name for the data set. An arbitrary string.

• OutputName, InputName: Cell arrays of length ny-by-1 and nu-by-1
containing the names of the output and input channels. For estimated
models, these are inherited from the data. If not specified, they are
given default names {'y1','y2',...} and {'u1','u2',...}.

• OutputUnit, InputUnit: Cell arrays of length ny-by-1 and nu-by-1
containing the units of the output and input channels. Inherited
from data for estimated models.

• TimeUnit: Unit for the sampling interval.

• Ts: Sampling interval. A nonnegative scalar. Ts = 0 denotes
a continuous-time model. Note that changing just Ts will not
recompute the model parameters. Use c2d and d2c for recomputing
the model to other sampling intervals.

• ParameterVector: Vector of adjustable parameters in the model
structure. Initial/nominal values or estimated values, depending on
the status of the model. A column vector.

• PName: The names of the parameters. A cell array of the length of
the parameter vector. If not specified, it will contain empty strings.
See also setpname.

• CovarianceMatrix: Estimated covariance matrix of the parameter
vector. For a nonestimated model this is the empty matrix. For
state-space models in the 'Free' parameterization the covariance
matrix is also the empty matrix, since the individual matrix
elements are not identifiable then. Instead, in this case, the
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covariance information is hidden (in the hidden property 'Utility')
and retrieved by the relevant functions when necessary. Setting
CovarianceMatrix to 'None' inhibits calculation of covariance and
uncertainty information. This can save substantial time for certain
models.

• NoiseVariance: Covariance matrix of the noise source e. An
ny-by-ny matrix.

• InputDelay: Vector of size nu-by-1, containing the input delay from
each input channel. For a continuous-time model (Ts = 0) the delay
is measured in TimeUnit, while for discrete-time models (Ts > 0) the
delay is measured as the number of samples. Note the difference
between InputDelay and nk (which is a property of idarx, idss,
and idpoly). 'Nk' is a model structure property that tells the
model structure to include such an input delay. In that case, the
corresponding state-space matrices and polynomials will explicitly
contain Nk input delays. The property InputDelay, on the other
hand, is an indication that in addition to the model as defined, the
inputs should be shifted by the given amount. InputDelay is used
by sim and the estimation routines to shift the input data. When
computing frequency responses, the InputDelay is also respected.
Note that InputDelay can be both positive and negative.

• Algorithm: See the reference page for Algorithm Properties.

• EstimationInfo: See the reference page for EstimationInfo.

• Notes: An arbitrary field to store extra information and notes about
the object.

• UserData: An arbitrary field for any possible use.

Note All properties can be set or retrieved either by these commands
or by subscripts. Autofill applies to all properties and values, and is
case insensitive.
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For a complete list of property values, use get(m). To see possible value
assignments, use set(m).

SubreferencingThe outputs and input channels can be referenced according to

m(outputs,inputs)

Use a colon (:) to denote all channels and an empty matrix ([ ]) to denote
no channels. The channels can be referenced by number or by name.
For several names, you must use a cell array.

m2 = m('y3',{'u1','u4'})
m3 = m(3,[1 4])

For a single output model m,

m4 = m(inputs)

selects the corresponding input channels, and for a single input model,

m5 = m(outputs)

selects the indicated output channels.

The string 'measured' (or any abbreviation like 'm') means the
measured input channels.

m4 = m(3,'m')
m('m') is the same as m(:,'m')

Similarly, the string 'noise' (or any abbreviation) refers to the noise
input channels. See “The Noise Channels” on page 12-130 for more
details.

Horizontal
Concatenation

Adding input channels,

m = [m1,m2,...,mN]
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creates an idmodel object m, consisting of all the input channels in
m1,... mN. The output channels of mk must be the same.

Vertical
Concatenation

Adding output channels,

m = [m1;m2;... ;mN]

creates an idmodel object m consisting of all the output channels in m1,
m2, ..mN. The input channels of mk must all be the same.

Online
Help
Functions

Type idhelp idmodel, idprops idmodel, Methods(idmodel), idprops
idmodel algorithm.

See Also Algorithm Properties

EstimationInfo

compare

idarx

idgrey

idpoly

idproc

idss

noisecnv
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Purpose Class for storing nonlinear ARX models

Syntax m=idnlarx([na nb nk])
m=idnlarx([na nb nk],Nonlinearity)
m=idnlarx([na nb nk],Nonlinearity,P1,V1,...,PN,VN)

Description idnlarx is an object that stores nonlinear ARX model properties,
including model parameters.

Typically, you use the nlarx command to both specify the nonlinear
ARX model properties and estimate the model. You can specify the
model properties directly in the nlarx syntax.

For information about the nonlinear ARX model structure, see
“Definition of the Nonlinear ARX Model” on page 6-5.

The information in these reference pages summarizes the idnlarx
model constructor and properties. It discusses the following topics:

• “idnlarx Constructor” on page 12-137

• “idnlarx Properties” on page 12-139

• “idnlarx Algorithm Properties” on page 12-141

• “idnlarx Advanced Algorithm Properties” on page 12-143

• “idnlarx EstimationInfo Properties” on page 12-145

idnlarx
Constructor

Typically, you use the nlarx estimator command to specify the model
properties and estimate the nonlinear ARX model. However, you
can also use the idnlarx constructor to create the nonlinear ARX
model structure in advance, and then estimate the parameters of this
structure using pem.

m=idnlarx([na nb nk]) creates an idnlarx object with the specified
number of output terms na, input terms nb, and input delays nk.

m=idnlarx([na nb nk],Nonlinearity) creates an idnlarx object with
the specified nonlinearity structure.
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m=idnlarx([na nb nk],Nonlinearity,P1,V1,...,PN,VN) creates an
idnlarx object and specifies idnlarx property-value pairs. For more
information about idnlarx properties, see “idnlarx Properties” on page
12-139.

The constructor arguments have the following specifications:

[na nb nk]
na is the number of output terms, nb is the number of input terms,
and nk is the input delays from each input to output.

For ny outputs and nu inputs, [na nb nk] has as many rows as
there are outputs. In this case, na is an ny-by-ny matrix whose
i-jth entry gives the number of delayed jth outputs used to
compute the ith output. nb and nk are ny-by-nu matrices.

These orders specify the regressors and the predicted output is
the following function of these regressors:

F y t y t na u t nk u t nk nb−( ) −( ) −( ) − − +( )( )1 1, , , , ,K K

Nonlinearity
Specifies the nonlinearity estimator object as one of the following:
sigmoidnet (default), wavenet, treepartition, customnet,
neuralnet, and linear. The nonlinearity estimator objects have
properties that you can set in the constructor, as follows:

m=idnlarx([2 3 1],sigmoidnet('Num',15))

For ny outputs, Nonlinearity is an ny-by-1 array, such as
[sigmoidnet;wavenet]. However, if you specify a scalar object,
this nonlinearity object applies to all outputs.

To use default nonlinearity properties, specify the nonlinearity
object name as a string. For example:

m=idnlarx([3 2 1],'sigmoidnet')
m=idnlarx([3 2 1],'sig') % Abbreviated
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For more information about nonlinearity properties, see the
corresponding reference pages.

idnlarx
Properties

You can include property-value pairs in the model estimator or
constructor to specify the model structure and estimation algorithm
properties.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% Get the model time unit
get(m,'TimeUnit')
% Get value of Nonlinearity property
m.Nonlinearity

You can also use set or dot notation to assign property values to the
object.

For example, the following two commands are equivalent:

set(m,'Nonlinearity','sigmoidnet')
m.Nonlinearity='sigmoidnet'

The following table summarizes idnlarx model properties. The general
idnlmodel properties also apply to this nonlinear model object (see the
corresponding reference pages).

Property Name Description

Algorithm A structure that specifies the estimation algorithm options, as
described in “idnlarx Algorithm Properties” on page 12-141.

CustomRegressors Custom expression in terms of standard regressors.
Assignable values:

• Cell array of strings. For example:
{'y1(t-3)^3','y2(t-1)*u1(t-3)','sin(u3(t-2))'}.

• Object array of customreg objects. For more information
about this object, see the corresponding reference pages.
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Property Name Description

EstimationInfo A read-only structure that stores estimation settings and
results, as described in “idnlarx EstimationInfo Properties” on
page 12-145.

Focus Specifies 'Prediction' or 'Simulation'.
Assignable values:

• 'Prediction' — The estimation algorithm minimizes

y y− ˆ , where ŷ is the predicted output.

• 'Simulation' — The estimation algorithm minimizes

the output error fit. That is, when computing ŷ , y in the
regressors in F are replaced by values simulated from the
input only.

Note You cannot use 'Simulation' when the model contains
custom regressors with past outputs.

NonlinearRegressors Specifies which standard or custom
regressors enter the nonlinear block.
Assignable values:

• 'all' — All regressors enter the nonlinear block.

• 'input' — Input regressors only.

• 'output' — Output regressors only.

• 'standard' — Standard regressors only.

• 'custom' — Custom regressors only.

• 'search' — Specifies that the estimation algorithm perform
an exhaustive search of the best regressor combination.

• '[]' — No regressors enter the nonlinear block.
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Property Name Description

Nonlinearity Nonlinearity estimator object. Assignable values include
sigmoidnet (default), wavenet, treepartition, customnet,
neuralnet, and linear.

For ny outputs, Nonlinearity is an ny-by-1 array, such as
[sigmoidnet;wavenet]. However, if you specify a scalar
object, this nonlinearity object applies to all outputs.

na
nb
nk

Model orders and input delays, where na is the number of
output terms, nb is the number of input terms, and nk is the
delay from input to output in terms of the number of samples.

For ny outputs and nu inputs, na is an ny-by-ny matrix whose
i-jth entry gives the number of delayed jth outputs used to
compute the ith output. nb and nk are ny-by-nu matrices.

idnlarx
Algorithm
Properties

The following table summarizes the fields of the Algorithm idnlarx
model properties. Algorithm is a structure that specifies the
estimation-algorithm options.

Property Name Description

Advanced A structure that specifies additional estimation algorithm
options, as described in “idnlarx Advanced Algorithm
Properties” on page 12-143.

IterWavenet (For wavenet nonlinear estimator only)
Toggles performing iterative or noniterative estimation.
Default: 'auto'.
Assignable values:

• 'auto' — First estimation is noniterative and subsequent
estimation are iterative.

• 'On' — Perform iterative estimation only.

• 'Off' — Perform noniterative estimation only.
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Property Name Description

LimitError Robustification criterion that limits the influence of
large residuals, specified as a positive real value.
Residual values that are larger than 'LimitError'
times the estimated residual standard deviation have
a linear cost instead of the usual quadratic cost.
Default: 0 (no robustification).

MaxIter Maximum number of iterations for the estimation
algorithm, specified as a positive integer.
Default: 20.

MaxSize The number of elements (size) of the largest matrix to be
formed by the algorithm. Computational loops are used for
larger matrices. Use this value for memory/speed trade-off.
Default: 25000.
Assignable values:

• 'Auto' — Matrix size is determined from the m-file
idmsize.

• Any positive integer.

Note The original data matrix of u and y must be smaller
than MaxSize.
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Property Name Description

SearchMethod Method used by the iterative search algorithm.
Assignable values:

• 'Auto' — Automatically chooses from the following
methods.

• 'gn' — Gauss-Newton method.

• 'gna' — Adaptive Gauss-Newton method.

• 'grad' — A gradient method.

• 'lm' — Levenberg-Marquardt method.

• 'lsqnonlin' — Nonlinear least-squares method (requires
Optimization Toolbox).

Tolerance Specifies to terminate the iterative search when the
expected improvement of the parameter values is less
than Tolerance, specified as a positive real value in %.
Default: 0.01.

Trace Toggles displaying or hiding estimation progress
information in the MATLAB Command Window.
Default: 'Off'.
Assignable values:

• 'Off' — Hide estimation information.

• 'On' — Display estimation information.

idnlarx
Advanced
Algorithm
Properties

The following table summarizes the fields of the Algorithm.Advanced
model properties. The fields in the Algorithm.Advanced structure
specify additional estimation-algorithm options.

12-143



idnlarx

Property Name Description

GnPinvConst When the search direction is computed, the algorithm
discards the singular values of the Jacobian that are
smaller than GnPinvConst*max(size(J))*norm(J)*eps.
Singular values that are closer to 0 are
included when GnPinvConst is decreased.
Default: 1e4.
Assign a positive, real value.

LMStartValue (For Levenberg-Marquardt search algorithm) The starting
level of regularization when using the Levenberg-Marquardt
search method (Algorithm.SearchMethod='lm').
Default: 0.001.
Assign a positive real value.

LMStep (For Levenberg-Marquardt search algorithm) Try this
next level of regularization to get a lower value
of the criterion function. The level of regularization
is LMStep times the previous level. At the start
of a new iteration, the level of regularization is
computed as1/LMStep times the previous level.
Default: 10.
Assign a real value >1.

MaxBisections Maximum number of bisections performed by the line search
algorithm along the search direction. Used by 'gn', 'gna' and
'grad' search methods (Algorithm.SearchMethod property)
Default: 10.
Assign a positive integer value.

MaxFunEvals The iterations are stopped if the number of
calls to the model file exceeds this value.
Default: Inf.
Assign a positive integer value.

MinParChange The smallest parameter update allowed per iteration.
Default: 1e-16.
Assign a positive, real value.
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Property Name Description

RelImprovement The iterations are stopped if the relative improvement of
the criterion function is less than RelImprovement.
Default: 0.
Assign a positive real value.

Note Does not apply to
Algorithm.SearchMethod='lsqnonlin'

StepReduction (For line search algorithm) The suggested parameter update
is reduced by the factor 'StepReduction' after each
try until either 'MaxBisections' tries are completed
or a lower value of the criterion function is obtained.
Default: 2.
Assign a positive, real value >1.

idnlarx
EstimationInfo
Properties

The following table summarizes the fields of the EstimationInfo model
properties. The read-only fields of the EstimationInfo structure store
estimation settings and results.

Property Name Description

Status Shows whether the model parameters were estimated.

Method Shows the estimation method.

LossFcn Value of the loss function, equal to det(E'*E/N), where E is
the residual error matrix (one column for each output) and N is
the total number of samples.

FPE Value of Akaike’s Final Prediction Error (see fpe).

DataName Name of the data from which the model is estimated.

DataLength Length of the estimation data.

DataTs Sampling interval of the estimation data.
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Property Name Description

DataDomain 'Time' means time domain data. 'Frequency' is not
supported.

DataInterSample Intersample behavior of the input estimation data used for
interpolation:

• 'zoh' means zero-order-hold, or piecewise constant.

• 'foh' means first-order-hold, or piecewise linear.

WhyStop Reason for terminating parameter estimation iterations.

UpdateNorm Norm of the Gauss-Newton in the last iteration. Empty when
'lsqnonlin' is the search method.

LastImprovement Criterion improvement in the last iteration, shown in %.
Empty when 'lsqnonlin' is the search method.

Iterations Number of iterations performed by the estimation algorithm.

Warning Any warnings encountered during parameter estimation.

InitRandState The value of randn('state') at the last randomization of the
initial parameter vector.

EstimationTime Duration of the estimation.

See Also nlarx

pem
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Purpose Class for storing Hammerstein-Wiener input-output models

Syntax m=idnlhw([nb nf nk])
m=idnlhw([nb nf nk],InputNL,OutputNL)
m=idnlhw([nb nf nk],InputNL,OutputNL,P1,V1,...,PN,VN)

Description idnlhw is an object that stores Hammerstein-Wiener model properties,
including model parameters.

Typically, you use the nlhw command to both specify the
Hammerstein-Wiener model properties and estimate the model. You
can specify the model properties directly in the nlhw syntax.

For information about the Hammerstein-Wiener model structure, see
“Definition of the Hammerstein-Wiener Model” on page 6-35.

The information in these reference pages summarizes the idnlhw model
constructor and properties. It discusses the following topics:

• “idnlhw Constructor” on page 12-147

• “idnlhw Properties” on page 12-148

• “idnlhw Algorithm Properties” on page 12-150

• “idnlhw Advanced Algorithm Properties” on page 12-152

• “idnlhw EstimationInfo Properties” on page 12-154

idnlhw
Constructor

Typically, you use the nlhw estimator command to specify the model
properties and estimate the Hammerstein-Wiener model. However, you
can also use the idnlhw constructor to create the Hammerstein-Wiener
model structure in advance, and then estimate the parameters of this
structure using pem.

m=idnlhw([nb nf nk]) creates an idnlhw object with the specified
orders nb, nf, and input delays nk.

m=idnlhw([nb nf nk],InputNL,OutputNL) creates an idnlhw object
with the specified input and output nonlinearity estimator.

12-147



idnlhw

m=idnlhw([nb nf nk],InputNL,OutputNL,P1,V1,...,PN,VN) creates
an idnlhw object and specifies idnlhw property-value pairs. For more
information about idnlhw properties, see “idnlarx Properties” on page
12-139.

The constructor arguments have the following specifications:

[nb nf nk]
Model orders and input delays, where nb is the number of zeros
plus 1, nf is the number of poles, and nk is the delay from input to
output in terms of the number of samples.

For nu inputs and ny outputs, nb, nf and, nk are ny-by-nu matrices
whose i-jth entry specifies the orders and delay of the transfer
function from the jth input to the ith output.

InputNL and OutputNL
Specify the input and output nonlinearity estimator objects as
one of the following: pwlinear (default), deadzone, wavenet,
saturation, customnet, sigmoidnet, and unitgain. The
nonlinearity estimator objects have properties that you can set
in the constructor, as follows:

m=idnlhw([2 2 1],sigmoidnet('num',5),deadzone([-1,2]))

To use default nonlinearity properties, specify the nonlinearity
object name as a string. For example:

m=idnlhw([2 2 1],'sigmoidnet','deadzone')
m=idnlhw([2 2 1],'sig','dead') % Abbreviated

The estimator unitgain (can also be entered as []) means
nonlinearity. Thus, m=idnlhw([2 2 1],'saturation',[]) gives
a Hammerstein model. For more information about nonlinearity
properties, see the corresponding reference pages.

idnlhw
Properties

You can include property-value pairs in the model estimator or
constructor to specify the model structure and estimation algorithm
properties.
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After creating the object, you can use get or dot notation to access the
object property values. For example:

% Get the model B parameters
get(m,'b')
% Get value of Nonlinearity property
m.b

You can also use set or dot notation to assign property values to the
object.

For example, the following two commands are equivalent:

set(m,'InputNonlinearity','sigmoidnet')
m.InputNonlinearity='sigmoidnet'

The following table summarizes idnlhw model properties. The general
idnlmodel properties also apply to this nonlinear model object (see the
corresponding reference pages).

Property Name Description

Algorithm A structure that specifies the estimation algorithm options, as
described in “idnlhw Algorithm Properties” on page 12-150.

b B polynomial as a cell array. b{1} is a vector with as many
leading zeros as there are input delays.

f F polynomial as a cell array. f{1} is a vector.

LinearModel (Read only) The linear model is an Output-Error (OE). For
single output, represented as an idpoly object. For muliple
output, represented as an idss object.

EstimationInfo A read-only structure that stores estimation settings and
results, as described in “idnlhw EstimationInfo Properties” on
page 12-154.
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Property Name Description

InputNonlinearity Nonlinearity estimator object. Assignable values include
pwlinear (default), deadzone, wavenet, saturation,
customnet, sigmoidnet, and unitgain. For more information,
see the corresponding reference pages.

For ny outputs, Nonlinearity is an ny-by-1 array, such as
[sigmoidnet;wavenet]. However, if you specify a scalar
object, this nonlinearity object applies to all outputs.

OutputNonlinearity Same as InputNonlinearity.

nb
nf
nk

Model orders and input delays, where nb is the number of
zeros plus 1, nf is the number of poles, and nk is the delay
from input to output in terms of the number of samples.

For nu inputs and ny outputs, nb, nf and, nk are ny-by-nu
matrices whose i-jth entry specifies the orders and delay of the
transfer function from the jth input to the ith output.

idnlhw
Algorithm
Properties

The following table summarizes the fields of the Algorithm idnlhw
model properties. Algorithm is a structure that specifies the
estimation-algorithm options.

Property Name Description

Advanced A structure that specifies additional estimation algorithm
options, as described in “idnlhw Advanced Algorithm
Properties” on page 12-152.
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Property Name Description

IterWavenet (For wavenet nonlinear estimator only)
Toggles performing iterative or noniterative estimation.
Default: 'auto'.
Assignable values:

• 'auto' — First estimation is noniterative and subsequent
estimation are iterative.

• 'On' — Perform iterative estimation only.

• 'Off' — Perform noniterative estimation only.

LimitError Robustification criterion that limits the influence of
large residuals, specified as a positive real value.
Residual values that are larger than 'LimitError'
times the estimated residual standard deviation have
a linear cost instead of the usual quadratic cost.
Default: 0 (no robustification).

MaxIter Maximum number of iterations for the estimation
algorithm, specified as a positive integer.
Default: 20.

MaxSize The number of elements (size) of the largest matrix to be
formed by the algorithm. Computational loops are used for
larger matrices. Use this value for memory/speed trade-off.
Default: 25000.
Assignable values:

• 'Auto' — Matrix size is determined from the m-file
idmsize.

• Any positive integer.

Note The original data matrix of u and y must be smaller
than MaxSize.
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Property Name Description

SearchMethod Method used by the iterative search algorithm.
Assignable values:

• 'Auto' — Automatically chooses from the following
methods.

• 'gn' — Gauss-Newton method.

• 'gna' — Adaptive Gauss-Newton method.

• 'grad' — A gradient method.

• 'lm' — Levenberg-Marquardt method.

• 'lsqnonlin' — Nonlinear least-squares method (requires
Optimization Toolbox).

Tolerance Specifies to terminate the iterative search when the
expected improvement of the parameter values is less
than Tolerance, specified as a positive real value in %.
Default: 0.01.

Trace Toggles displaying or hiding estimation progress
information in the MATLAB Command Window.
Default: 'Off'.
Assignable values:

• 'Off' — Hide estimation information.

• 'On' — Display estimation information.

idnlhw
Advanced
Algorithm
Properties

The following table summarizes the fields of the Algorithm.Advanced
model properties. The fields in the Algorithm.Advanced structure
specify additional estimation-algorithm options.
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Property Name Description

GnPinvConst When the search direction is computed, the algorithm
discards the singular values of the Jacobian that are
smaller than GnPinvConst*max(size(J))*norm(J)*eps.
Singular values that are closer to 0 are
included when GnPinvConst is decreased.
Default: 1e4.
Assign a positive, real value.

LMStartValue (For Levenberg-Marquardt search algorithm) The starting
level of regularization when using the Levenberg-Marquardt
search method (Algorithm.SearchMethod='lm').
Default: 0.001.
Assign a positive real value.

LMStep (For Levenberg-Marquardt search algorithm) Try this
next level of regularization to get a lower value
of the criterion function. The level of regularization
is LMStep times the previous level. At the start
of a new iteration, the level of regularization is
computed as1/LMStep times the previous level.
Default: 10.
Assign a real value >1.

MaxBisections Maximum number of bisections performed by the line search
algorithm along the search direction. Used by 'gn', 'gna' and
'grad' search methods (Algorithm.SearchMethod property)
Default: 10.
Assign a positive integer value.

MaxFunEvals The iterations are stopped if the number of
calls to the model file exceeds this value.
Default: Inf.
Assign a positive integer value.

MinParChange The smallest parameter update allowed per iteration.
Default: 1e-16.
Assign a positive, real value.
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Property Name Description

RelImprovement The iterations are stopped if the relative improvement of
the criterion function is less than RelImprovement.
Default: 0.
Assign a positive real value.

Note Does not apply to
Algorithm.SearchMethod='lsqnonlin'

StepReduction (For line search algorithm) The suggested parameter update
is reduced by the factor 'StepReduction' after each
try until either 'MaxBisections' tries are completed
or a lower value of the criterion function is obtained.
Default: 2.
Assign a positive, real value >1.

idnlhw
EstimationInfo
Properties

The following table summarizes the fields of the EstimationInfo model
properties. The read-only fields of the EstimationInfo structure store
estimation settings and results.

Property Name Description

Status Shows whether the model parameters were estimated.

Method Shows the estimation method.

LossFcn Value of the loss function, equal to det(E'*E/N), where E is
the residual error matrix (one column for each output) and N is
the total number of samples.

FPE Value of Akaike’s Final Prediction Error (see fpe).

DataName Name of the data from which the model is estimated.
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Property Name Description

DataLength Length of the estimation data.

DataTs Sampling interval of the estimation data.

DataDomain 'Time' means time domain data. 'Frequency' is not
supported.

DataInterSample Intersample behavior of the input estimation data used for
interpolation:

• 'zoh' means zero-order-hold, or piecewise constant.

• 'foh' means first-order-hold, or piecewise linear.

WhyStop Reason for terminating parameter estimation iterations.

UpdateNorm Norm of the search vector (gn-vector) in the last iteration.
Empty when 'lsqnonlin' is the search method.

LastImprovement Criterion improvement in the last iteration, shown in %.
Empty when 'lsqnonlin' is the search method.

Iterations Number of iterations performed by the estimation algorithm.

Warning Any warnings encountered during parameter estimation.

InitRandState The value of randn('state') at the last randomization of the
initial parameter vector.

EstimationTime Duration of the estimation.

See Also nlhw

pem
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Purpose Class for storing nonlinear grey-box models

Syntax m = idnlgrey('filename',Order,Parameters)
m = idnlgrey('filename',Order,Parameters,InitialStates)
m = idnlgrey('filename',Order,Parameters,InitialStates,Ts)

Description idnlgrey is an object that stores the nonlinear grey-box model
structure.

For information about the nonlinear grey-box model structure, see
“Specifying the Nonlinear Grey-Box Model Structure” on page 7-13.

The information in these reference pages summarizes the idnlgrey
model constructor and properties. It discusses the following topics:

• “idnlgrey Constructor” on page 12-156

• “idnlgrey Properties” on page 12-157

• “idnlgrey Advanced Algorithm Properties” on page 12-161

• “idnlgrey Simulation Options” on page 12-162

• “idnlgrey Gradient Options” on page 12-166

• “idnlgrey EstimationInfo Properties” on page 12-167

idnlgrey
Constructor

Use the following syntax to define the idnlgrey model object:

m = idnlgrey('filename',Order,Parameters)

m = idnlgrey('filename',Order,Parameters,InitialStates)

m = idnlgrey('filename',Order,Parameters,InitialStates,Ts)

The idnlgrey arguments are defined as follows:

• 'filename' — Name of the m-file or MEX-file storing the model
structure. This file must be on the MATLAB path.
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• Order — Vector with three entries [Ny Nu Nx], specifying the
number of model outputs Ny, the number of inputs Nu, and the
number of states Nx.

• Parameters — Parameters, specified as struct arrays, cell arrays, or
double arrays.

• InitialStates — Specified in a same way as parameters. Must be
fourth input to the idnlgrey constructor.

Estimate the parameters of this structure using pem.

idnlgrey
Properties

You can include property-value pairs in the model estimator or
constructor to specify the model structure and estimation algorithm
properties.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% Get the model time unit
get(m,'TimeUnit')
m.TimeUnit

You can also use set or dot notation to assign property values to the
object.

For example, the following two commands are equivalent:

set(m,'TimeUnit','sec')
m.TimeUnit='sec'

The following table summarizes idnlgrey model properties. The
general idnlmodel properties also apply to this nonlinear model object
(see the corresponding reference pages).
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Property Name Description

Algorithm A structure that specifies the estimation algorithm options, as
described in “idnlgrey Algorithm Properties” on page 12-159.

CovarianceMatrix Covariance matrix of the estimated Parameters.
Symmetric and positive Np-by-Np matrix (or []),
where Np is the number of free model parameters.
Assignable values:

• 'None' to omit computing uncertainties and save time
during parameter estimation.

• 'Estimate' to estimation covariance.

EstimationInfo A read-only structure that stores estimation settings and
results, as described in “idnlgrey EstimationInfo Properties”
on page 12-167.

FileArgument Contains auxiliary variables passed to the m-file or MEX-file.
There variables might be required for updating the constants
in the state equations. FileArgument data is a cell array.
Default: {}.

FileName File name string (without extension) or a function handle
for computing the states and the outputs. If ’FileName’ is
a string, then it must point to an m-file or MEX-file. For
more information about the file variables, see “Specifying the
Nonlinear Grey-Box Model Structure” on page 7-13.

InitialStates Specified in a same way as parameters. Must be fourth input
to the idnlgrey constructor.
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Property Name Description

Order Structure with following fields:

• ny — Number of outputs of the model structure.

• nu — Number of inputs of the model structure.

• nx — Number of states of the model structure.

For time-series, nu is 0.

Parameters Np-by-1 structure array with information about the model
parameters. Parameters can be real scalars, column vectors,
or two-dimensional matrices. Np is the number of parameter
object. For scalar parameters, Np is the total number of
parameter elements.

idnlgrey
Algorithm
Properties

The following table summarizes the fields of the Algorithm idnlhw
model properties. Algorithm is a structure that specifies the
estimation-algorithm options.

Property Name Description

Advanced A structure that specifies additional estimation algorithm
options, as described in “idnlgrey Advanced Algorithm
Properties” on page 12-161.

LimitError Robustification criterion that limits the influence of
large residuals, specified as a positive real value.
Residual values that are larger than 'LimitError'
times the estimated residual standard deviation have
a linear cost instead of the usual quadratic cost.
Default: 1.6.

MaxIter Maximum number of iterations for the estimation
algorithm, specified as a positive integer.
Default: 20.
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Property Name Description

SearchMethod Method used by the iterative search algorithm.
Assignable values:

• 'Auto' — Automatically chooses from the following
methods.

• 'gn' — Gauss-Newton method.

• 'gna' — Adaptive Gauss-Newton method.

• 'grad' — A gradient method.

• 'lm' — Levenberg-Marquardt method.

• 'lsqnonlin' — Nonlinear least-squares method (requires
Optimization Toolbox).

Tolerance Specifies to terminate the iterative search when the
expected improvement of the parameter values is less
than Tolerance, specified as a positive real value in %.
Default: 0.01.

GradientOptions A structure that specifies the options related to calculation
of gradient of the cost, “idnlgrey Gradient Options” on page
12-166.

SimulationOptions A struct that specifies the simulation method and related
options, as described in “idnlgrey Simulation Options” on page
12-162.

Trace Toggles displaying or hiding estimation progress
information in the MATLAB Command Window.
Default: 'Off'.
Assignable values:

• 'Off' — Hide estimation information.

• 'On' — Display estimation information.
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idnlgrey
Advanced
Algorithm
Properties

The following table summarizes the fields of the Algorithm.Advanced
model properties. The fields in the Algorithm.Advanced structure
specify additional estimation-algorithm options.

Property Name Description

GnPinvConst When the search direction is computed, the algorithm
discards the singular values of the Jacobian that are
smaller than GnPinvConst*max(size(J))*norm(J)*eps.
Singular values that are closer to 0 are
included when GnPinvConst is decreased.
Default: 1e4.
Assign a positive, real value.

LMStartValue (For Levenberg-Marquardt search algorithm) The starting
level of regularization when using the Levenberg-Marquardt
search method (Algorithm.SearchMethod='lm').
Default: 0.001.
Assign a positive real value.

LMStep (For Levenberg-Marquardt search algorithm) Try this
next level of regularization to get a lower value
of the criterion function. The level of regularization
is LMStep times the previous level. At the start
of a new iteration, the level of regularization is
computed as1/LMStep times the previous level.
Default: 10.
Assign a real value >1.

MaxBisections Maximum number of bisections performed by the line search
algorithm along the search direction. Used by 'gn', 'gna' and
'grad' search methods (Algorithm.SearchMethod property)
Default: 10.
Assign a positive integer value.
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Property Name Description

MaxFunEvals The iterations are stopped if the number of
calls to the model file exceeds this value.
Default: Inf.
Assign a positive integer value.

MinParChange The smallest parameter update allowed per iteration.
Default: 1e-16.
Assign a positive, real value.

RelImprovement The iterations are stopped if the relative improvement of
the criterion function is less than RelImprovement.
Default: 0.
Assign a positive real value.

Note Does not apply to
Algorithm.SearchMethod='lsqnonlin'

StepReduction (For line search algorithm) The suggested parameter update
is reduced by the factor 'StepReduction' after each
try until either 'MaxBisections' tries are completed
or a lower value of the criterion function is obtained.
Default: 2.
Assign a positive, real value >1.

idnlgrey
Simulation
Options

The following table summarizes the fields of
Algorithm.SimulationOptions model properties.
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Property Name Description

AbsTol (For variable-step time-continuous solvers)
Specifies the smallest time step the ODE solver.
Default: 1e-6.
Assignable value: A positive real value.

FixedStep (For fixed-step time-continuous
solvers) Step size used by the solver.
Default: 'Auto'.
Assignable values:

• 'Auto' — Automatically chooses the initial step.

• A real value such that 0<FixedStep<=1.

InitialStep (For variable-step time-continuous solvers) Specifies the
initial step at which the ODE solver starts.
Default: 'Auto'.
Assignable values:

• 'Auto' — Automatically chooses the initial step.

• A positive real value such that
MinStep<=InitialStep<=MaxStep.

MaxOrder (For ode15s) Specifies the order of the
Numerical Differentiation Formulas (NDF).
Default: 5.
Assignable values: 1, 2, 3, 4 or 5.

MaxStep (For variable-step time-continuous solvers)
Specifies the largest time step of the ODE solver.
Default: 'Auto' — 1/15 of the simulation interval.
Assignable values:

• 'Auto' — Automatically chooses the time step.

• A positive real value > MinStep.
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Property Name Description

MinStep (For variable-step time-continuous solvers) Specifies
the smallest time step of the ODE solver.
Default: 'Auto'.
Assignable values:

• 'Auto' — Automatically chooses the time step.

• A positive real value < MaxStep.
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Property Name Description

RelTol (For variable-step time-continuous solvers) Relative error
tolerance that applies to all components of the state vector.
The estimated error in each integration step satisfies |e(i)|
<= max(RelTol*abs(x(i)), AbsTol(i)).
Default: 1e-3 (0.1% accuracy).
Assignable value: A positive real value.

Solver ODE (Ordinary Differential/Difference Equation)
solver for solving state space equations.
A. Variable-step solvers for time-continuous idnlgrey models:

• 'ode45' — Runge-Kutta (4,5) solver for nonstiff problems.

• 'ode23' — Runge-Kutta (2,3) solver for nonstiff problems.

• 'ode113' — Adams-Bashforth-Moulton solver for nonstiff
problems.

• 'ode15s' — Numerical Differential Formula solver for stiff
problems.

• 'ode23s' — Modified Rosenbrock solver for stiff problems.

• 'ode23t' — Trapezoidal solver for moderately stiff
problems.

• 'ode23tb' — Implicit Runge-Kutta solver for stiff problems.

B. Fixed-step solvers for time-continuous idnlgrey models:

• 'ode5' — Dormand-Prince solver.

• 'ode4' — Fourth-order Runge-Kutta solver.

• 'ode3' — Bogacki-Shampine solver.

• 'ode2' — Heun or improved Euler solver.

• 'ode1' — Euler solver.

C. Fixed-step solvers for time-discrete idnlgrey models:
'FixedStepDiscrete'

D. General: 'Auto' — Automatically chooses one of the
previous solvers (default).
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idnlgrey
Gradient
Options

The following table summarizes the fields of the Algorithm idnlhw
model properties. Algorithm is a structure that specifies the
estimation-algorithm options.

Property Name Description

DiffMaxChange Largest allowed parameter perturbation
when computing numerical derivatives.
Default: Inf.
Assignable value: A positive real value >'DiffMinChange'.

DiffMinChange Smallest allowed parameter perturbation
when computing numerical derivatives.
Default: 0.01*sqrt(eps).
Assignable value: A positive real value
<'DiffMaxChange'.
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Property Name Description

DiffScheme Method for computing numerical derivatives with
respect to the components of the parameters and/or
the initial state(s) to form the Jacobian.
Default: 'Auto'
Assignable values:

• 'Auto' - Automatically chooses from the following methods.

• 'Central approximation'

• 'Forward approximation'

• 'Backward approximation'

GradientType Method used when computing derivatives (Jacobian)
of the parameters or the initial states to be estimated.
Default: 'Auto'.
Assignable values:

• 'Auto' — Automatically chooses from the following
methods.

• 'Basic' — Individually computes all numerical derivatives
required to form each column of the Jacobian.

• 'Refined' — Simultaneously computes all numerical
derivatives required to form each column of the Jacobian.

idnlgrey
EstimationInfo
Properties

The following table summarizes the fields of the EstimationInfo model
properties. The read-only fields of the EstimationInfo structure store
estimation settings and results.
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Property Name Description

Status Shows whether the model parameters were estimated.

Method Names of the solver and the optimizer used during estimation.

LossFcn Value of the loss function, equal to det(E'*E/N), where E is
the residual error matrix (one column for each output) and
N is the total number of samples. Provides a quantitative
description of the model quality.

FPE Value of Akaike’s Final Prediction Error (see fpe).

DataName Name of the data from which the model is estimated.

DataLength Length of the estimation data.

DataTs Sampling interval of the estimation data.

DataDomain 'Time' means time domain data. 'Frequency' is not
supported.

DataInterSample Intersample behavior of the input estimation data used for
interpolation:

• 'zoh' means zero-order-hold, or piecewise constant.

• 'foh' means first-order-hold, or piecewise linear.

WhyStop Reason for terminating parameter estimation iterations.

UpdateNorm Norm of the search vector (Gauss-Newton vector) at the last
iteration. Empty when 'lsqnonlin' is the search method.

LastImprovement Criterion improvement in the last iteration, shown in %.
Empty when SearchMethod='lsqnonlin' is the search
method.

Iterations Number of iterations performed by the estimation algorithm.
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Property Name Description

InitialGuess Structure with the fields InitialStates and Parameters,
specifying the values of these quantities before the last
estimation.

Warning Any warnings encountered during parameter estimation.

See Also pem
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Purpose Superclass for nonlinear models

Description You do not use the idnlmodel class directly. Instead, idnlmodel
defines the common properties and methods inherited by its subclasses,
idnlarx, idnlgrey, and idnlhw.

idnlmodel
Properties

The following table lists the properties shared by the idnlarx,
idnlgrey, and idnlhw, defined in terms of Ny outputs and Nu inputs.

Property Name Description

InputName Specifies the names of individual input channels.
Default: {'u1';'u2';...;'uNu'}.

Assignable values:

• For single-output models, a string. For example, 'torque'.

• For multiple-output models, an
nu-by-1 cell array. For example:
{'thrust'; 'aileron deflection'}

InputUnit Specifies the units of each input channel.
Default: ''.

Assignable values:

• For single-output models, a string. For example, 'm/s'.

• For multiple-output models, an nu-by-1 cell array.

Name Name of the model, specified as a string.

NoiseVariance Noise variance (covariance matrix) of the model innovations e.
Assignable value is an Ny-by-Ny matrix.
Typically set automatically by the estimation algorithm.
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Property Name Description

OutputName Specifies the names of individual output channels.
Default: {'y1';'y2';...;'yNy'}.

Assignable values:

• For single-output models, a string. For example, 'torque'.

• For multiple-output models, an
nu-by-1 cell array. For example:
{'thrust'; 'aileron deflection'}

OutputUnit Specifies the units of each output channel.
Default: ''.

Assignable values:

• For single-output models, a string. For example, 'm/s'.

• For multiple-output models, an nu-by-1 cell array.

TimeUnit Unit of the sampling interval and
time vector, specified as a string.
Default: ''.

TimeVariable Independent variable for the inputs, outputs, and—when
available—internal states, specified as a string.
Default: 't' (time).

Ts Sampling interval with the unit specified by TimeUnit.
Default: 1.

Assignable values:

• For discrete-time models, positive scalar value of the
sampling interval.

• For continuous-time models, 0.
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See Also

idnlarx

idnlgrey

idnlhw
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Purpose Class for storing linear polynomial input-output models

Syntax m = idpoly(A,B)
m = idpoly(A,B,C,D,F,NoiseVariance,Ts)
m = idpoly(A,B,C,D,F,NoiseVariance,Ts,'Property1',Value1,...

'PropertyN',ValueN)

m = idpoly(mi)

Description idpoly creates a model object containing parameters that describe the
general multiinput single-output model structure.

A, B, C, D, and F specify the polynomial coefficients.

For single-input systems, these are all row vectors in the standard
MATLAB format.

A = [1 a1 a2 ... ana]

consequently describes

A, C, D, and F all start with 1, while B contains leading zeros to indicate
the delays. See “Definition of Polynomial Models” on page 5-43.

For multiinput systems, B and F are matrices with one row for each
input.

For time series, B and F are entered as empty matrices.

B = []; F = [];

NoiseVariance is the variance of the white noise sequence , while
Ts is the sampling interval.
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Trailing arguments C, D, F, NoiseVariance, and Ts can be omitted, in
which case they are taken as 1. (If B = [], then F is taken as [].) The
property name/property value pairs can start directly after B.

Ts = 0 means that the model is a continuous-time one. Then the
interpretation of the arguments is that

A = [1 2 3 4]

corresponds to the polynomial in the Laplace variable
s, and so on. For continuous-time systems, NoiseVariance indicates the
level of the spectral density of the innovations. A sampled version of the
model has the innovations variance NoiseVariance/Ts, where Ts is the
sampling interval. The continuous-time model must have a white noise
component in its disturbance description. See “Spectrum Normalization
and the Sampling Interval” on page 5-40.

For discrete-time models (Ts > 0), note the following: idpoly strips
any trailing zeros from the polynomials when determining the orders. It
also strips leading zeros from the B polynomial to determine the delays.
Keep this in mind when you use idpoly and polydata to modify earlier
estimates to serve as initial conditions for estimating new structures.

idpoly can also take any single-output idmodel or LTI object mi as
an input argument. If an LTI system has an input group with name
'Noise', these inputs are interpreted as white noise with unit variance,
and the noise model of the idpoly model is computed accordingly.

Properties • na, nb, nc, nd, nf, nk: The orders and delays of the polynomials.
Integers or row vectors of integers.

• a, b, c, d, f: The polynomials, described by row vectors and matrices
as detailed above.

• da, db, dc, dd, df: The estimated standard deviation of the
polynomials. Cannot be set.

• 'InitialState': How to deal with the initial conditions that are
required to compute the prediction of the output. Possible values are
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- 'Estimate': The necessary initial states are estimated from data
as extra parameters.

- 'Backcast': The necessary initial states are estimated by a
backcasting (backward filtering) process, described in Knudsen
(1994).

- 'Zero': All initial states are taken as zero.

- 'Auto': An automatic choice among the above is made, guided
by the data.

In addition, any idpoly object also has all the properties of idmodel.
See idmodel properties and Algorithm Properties.

Note that you can set or retrieve all properties either with the set and
get commands or by subscripts. Autofill applies to all properties and
values, and these are case insensitive.

m.a=[1 -1.5 0.7];
set(m,'ini','b')
p = roots(m.a)

For a complete list of property values, use get(m). To see possible value
assignments, use set(m). See also idprops idpoly.

Examples To create a system of ARMAX, type

A = [1 -1.5 0.7];
B = [0 1 0.5];
C = [1 -1 0.2];
m0 = idpoly(A,B,C);

This gives a system with one delay (nk = 1).

Create the continuous-time model
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Sample it with T = 0.1 and then simulate it without noise.

B=[0 1;1 3];
F=[1 1 0;1 2 4]
m = idpoly(1,B,1,1,F,1,0)
md = c2d(m,0.1)
y = sim(md,[u1 u2])

Note that the continuous-time model is automatically sampled to the
sampling interval of the data, when simulated, so the above is also
achieved by

u = iddata([],[u1 u2],0.1)
y = sim(m,u)

References Ljung (1999) Section 4.2 for the model structure family.

Knudsen, T., (1994), “ new method for estimating ARMAX models,”In
Proc. 10th IFAC Symposium on System Identification, pp. 611-617,
Copenhagen, Denmark, for the backcast method.

See Also idss

sim
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Purpose Class for storing low-order, continuous-time process models

Syntax m = idproc(Type)
m = idproc(Type,'Property1',Value1,...,'PropertyN',ValueN)
m = pem(Data,Type) % to directly estimate an idproc model

Description The function idproc is used to create typical simple, continuous-time
process models as idproc objects. The model has one output, but can
have several inputs.

The character of the model is defined by the argument Type. This is an
acronym made up of the following symbols:

• P: All 'Type' acronyms start with this letter.

• 0, 1, 2, or 3: This integer denotes the number of time constants
(poles) to be modeled. Possible integrations (poles in the origin) are
not included in this number.

• I: The letter I is included to mark that an integration is enforced
(self-regulation process).

• D: The letter D is used to mark that the model contains a time delay
(dead time).

• Z: The letter Z is used to mark an extra numerator term: a zero.

• U: The letter U is included to mark that underdamped modes
(complex-valued poles) are permitted. If U is not included, all poles
are restricted to be real.

This means, for example, that Type = 'P1D' corresponds to the model
with transfer function

while Type = 'P0I' is
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and Type = 'P3UZ' is

For multiinput systems, Type is a cell array where each cell describes
the character of the model from the corresponding input, like
Type = {'P1D'.'P0I'} for the two-input model

(12-2)

The parameters of the model are

• Kp: The static gain

• Tp1, Tp2, Tp3: The real-time constants (corresponding to poles in
1/Tp1, etc.)

• Tw and Zeta: The “resonance time constant” and the damping factor
corresponding to a denominator factor (1+2 Zeta Tw s + (Tw s)^2).
If underdamped modes are allowed, Tw and Zeta replace Tp1 and Tp2.
A third real pole, Tp3, could still be included.

• Td: The time delay

• Tz: The numerator zero

These properties contain fields that give the values of the parameters,
upper and lower bounds, and information whether they are locked to
zero, have a fixed value, or are to be estimated. For multiinput models,
the number of entries in these fields equals the number of inputs. This
is described in more detail below.

The idproc object is a child of idmodel. Therefore any idmodel
properties can be set as property name/property value pairs in the

12-178



idproc

idproc command. They can also be set by the command set, or by
subassignment, as in

m.InputName = {'speed','voltage'}
m.kp = 12

In the multiinput case, models for specific inputs can be obtained by
regular subreferencing.

m(ku)

There are also two properties, DisturbanceModel and InitialState,
that can be used to expand the model. See below.

idproc
Properties

• Type: A string or a cell array of strings with as many elements as
there are inputs. The string is an acronym made up of the characters
P, Z, I, U, D and an integer between 0 and 3. The string must start
with P, followed by the integer, while possible other characters can
follow in any order. The integer is the number of poles (not counting
a possible integration), Z means the inclusion of a numerator zero, D
means inclusion of a time delay, while U marks that the modes can be
underdamped (a pair of complex conjugated poles). I means that an
integration in the model is enforced.

• Kp, Tp1, Tp2, Tp3, Tw, Zeta, Tz, Td: These are the parameters as
explained above. Each of these is a structure with the following fields:

- value: Numerical value of the parameter.

- max: Maximum allowed value of the parameter when it is
estimated.

- min: Minimum allowed value of the parameter when it is
estimated. For multiinput models, these are row vectors.

- status: Assumes one of 'Estimate', 'Fixed', or 'Zero'.

'Zero' means that the parameter is locked to zero and not
included in the model. Assigning, for example, Type = 'P1'
means that the status of Tp2, Tp3, Tw, and Zeta will be 'Zero'.
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The value 'Fixed' means that the parameter is fixed to its value,
and will not be estimated.

The value 'Estimate' means that the parameter value should
be estimated.

For multiinput modes, status is a cell array with one element for
each input, while value, max, and min are row vectors.

• DisturbanceModel: Allows an additive disturbance model as in

(12-3)

where G(s) is a process model and e(t) is white noise, and C/D is a
first- or second-order transfer function.

DisturbanceModel can assume the following values:

- 'None': This is the default. No disturbance model is included
(that is, C=D=1).

- 'arma1': The disturbance model is a first-order ARMA model
(that is, C and D are first-order polynomials).

- 'arma2' or 'Estimate': The disturbance model is a second-order
ARMA model (that is, C and D are second-order polynomials).

When a disturbance model has been estimated, the property
DisturbanceModel is returned as a cell array, with the first entry
being the status as just defined, and the second entry being the
actual model, delivered as a continuous-time idpoly object.

• InitialState: Affects the parameterization of the initial values
of the states of the model. It assumes the same values as for other
models:

- 'Zero': The initial states are fixed to zero.

- 'Estimate': The initial states are treated as parameters to be
estimated.

- 'Backcast': The initial state vector is adjusted, during the
parameter estimation step, to a suitable value, but it is not stored.
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- 'Auto': Makes a data-dependent choice among the values above.

• InputLevel: The offset level of the input signal(s). This is of
particular importance for those input channels that contain an
integration. InputLevel will then define the level from which the
integration takes place, and that cannot be handled by estimating
initial states. InputLevel has the same structure as the model
parameters Kp, etc., and thus contains the following fields:

- value: Numerical value of the parameter. For multiinput models,
this is a row vector.

- max: Maximum allowed value of the parameter when it is
estimated.

- min: Minimum allowed value of the parameter when it is
estimated. For multiinput models, these are row vectors.

- status: Assumes one of 'Estimate', 'Fixed', or 'Zero' with
the same interpretations.

In addition, any idproc object also has all the properties of idmodel.
See Algorithm Properties, EstimationInfo, and idmodel.

Note that all properties can be set or retrieved using either the set
and get commands or subscripts. Autofill applies to all properties and
values, and these are case insensitive. Also 'u' and 'y' are short for
'Input' and 'Output', respectively. You can also set all properties at
estimation time as property name/property value pairs in the call to pem.
An extended syntax allows direct setting of the fields of the parameter
values, so that assigning a numerical value is automatically attributed
to the value field, while a string is attributed to the status field.

m.kp = 10
m.tp1 = 'estimate'
% Initializing the parameter Kp at the value 10
m = pem(Data,'P1D','kp',10)
% Fixing the parameter Kp to the value 10
m = pem(Data,'P1D','kp',10,'kp','fix')
% constraining Kp to lie between 3 and 4
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m = pem(Data,'P2U','kp',{'max',4},'kp',{'min',3})
% For two inputs, estimate the offset level
% of the first input
m = pem(Data,{'P2I','P1D',},'ulevel',{'est','zer'})
% estimate a noise model
m = pem(Data,'P2U','dist','est')
% Use a fixed noisemodel,
% given by the continuous-time idpoly model noimod
m = pem(Data,'P2U','dist',{'fix',noimod})
% (minimum Kp for the second input)
m.kp.min(2) = 12
% fixing the gain for the second input.
m.kp.status{2} = 'fix'

For a complete list of property values, use get(m). To see possible value
assignments, use set(m). See also idprops and idproc.

Examples m = pem(Data,'P2D','dist','arma1')
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Purpose Resample iddata object by decimation and interpolation

Syntax datar = idresamp(data,R)
[datar,res_fact] = idresamp(data,R,order,tol)

Arguments Z : The output-input data as a matrix or as an IDDATA object. ZD : The
resampled data. If Z is IDDATA, so is ZD. Otherwise the columns of ZD
correspond to those of Z. R : The resampling factor. The new data record
ZD will correspond to a sampling interval of R times that of the original
data. R > 1 thus means decimation and R < 1 means interpolation. Any
positive number for R is allowed, but it will be replaced by a rational
approximation.

[ZD, ACT_R] = IDRESAMP(Z,R,ORDER,TOL) gives access to the
following options: ORDER determines the filter orders used at
decimation and interpolation (Default 8). TOL gives the tolerance of
the rational approximation (Default 0.1). ACT_R is the actually used
resampling factor.

Description datar = idresamp(data,R)

[datar,res_fact] = idresamp(data,R,order,tol)

See Also idfilt
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Purpose Class for storing linear state-space models with known and unknown
parameters

Syntax m = idss(A,B,C,D)
m =
idss(A,B,C,D,K,x0,Ts,'Property1',Value1,...,'PropertyN',ValueN)
mss = idss(m1)

Description The function idss is used to construct state-space model structures
with various parameterizations. It is a complement to idgrey and deals
with parameterizations that do not require the user to write a special
M-file. Instead it covers parameterizations that are either 'Free',
that is, all parameters in the A, B, and C matrices can be adjusted
freely, or 'Canonical', meaning that the matrices are parameterized
as canonical forms. The parameterization can also be 'Structured',
which means that certain elements in the state-space matrices are free
to be adjusted, while others are fixed. This is explained below.

Ts is the sampling interval. Ts = 0 means a continuous-time model.
The default is Ts = 1.

The idss object m describes state-space models in innovations form of
the following kind:

Here is the time derivative for a continuous-time model and
for a discrete-time model.

The model m will contain information both about the nominal/initial
values of the A, B, C, D, K, and X0 matrices and about how these
matrices are parameterized by the parameter vector (to be estimated).
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The nominal model is defined by idss(A,B,C,D,K,X0). If K and X0 are
omitted, they are taken as zero matrices of appropriate dimensions.

Defining an idss object from a given model,

mss = idss(m1)

constructs an idss model from any idmodel or LTI system m1.

If m1 is an LTI system (ss, tf, or zpk) that has no InputGroup called
'Noise', the corresponding state-space matrices A, B, C, D are used to
define the idss object. The Kalman gain K is then set to zero.

If the LTI system has an InputGroup called 'Noise', these inputs are
interpreted as white noise with a covariance matrix equal to the identity
matrix. The corresponding Kalman gain and noise variance are then
computed and entered into the idss model together with A, B, C, and D.

Parameterizations

There are several different ways to define the parameterization of
the state-space matrices. The parameterization determines which
parameters can be adjusted to data by the parameter estimation routine
pem.

• Free black-box parameterizations: This is the default situation
and corresponds to letting all parameters in A, B, and C
be freely adjustable. You do this by setting the property
'SSParameterization' = 'Free'. The parameterizations of D, K,
and X0 are then determined by the following properties:

- 'nk': A row vector of the same length as the number of inputs.
The kuth element is the delay from input channel number ku.
Thus nk = [0,...,0] means that there is no delay from any of
the inputs, and that consequently all elements of the D matrix
should be estimated. nk =[1,...,1] means that there is a delay
of 1 from each input, so that the D matrix is fixed to be zero.

- 'DisturbanceModel': This property affects the parameterization
of K and can assume the following values:
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'Estimate': All elements of the K matrix are to be estimated.

'None': All elements of K are fixed to zero.

'Fixed': All elements of K are fixed to their nominal/initial values.

- 'InitialState': Affects the parameterization of X0 and can
assume the following values:

'Auto': An automatic choice of the following is made, depending
on data (default).

'Estimate': All elements of X0 are to be estimated.

'Zero': All elements of X0 are fixed to zero.

'Fixed': All elements of X0 are fixed to their nominal/initial
values.

'Backcast': The vector X0 is adjusted, during the parameter
estimation step, to a suitable value, but it is not stored as an
estimation result.

• Canonical black-box parameterizations: You do this by setting the
property 'SSParameterization' = 'Canonical'. The matrices A,
B, and C are then parameterized as an observer canonical form,
which means that ny (number of output channels) rows of A are
fully parameterized while the others contain 0’s and 1’s in a certain
pattern. The C matrix is built up of 0’s and 1’s while the B matrix
is fully parameterized. See Equation (A.16) in Ljung (1999) for
details. The exact form of the parameterization is affected by the
property 'CanonicalIndices'. The default value 'Auto' is a good
choice. The parameterization of the D, K, and X0 matrices in this
case is determined by the properties 'nk', 'DisturbanceModel',
and 'InitialState’.

• Arbitrarily structured parameterizations: The general case,
where arbitrary elements of the state-space matrices are fixed
and others can be freely adjusted, corresponds to the case
'SSParameterization' = 'Structured'. The parameterization is
determined by the idss properties As, Bs, Cs, Ds, Ks, and X0s. These
are the structure matrices that are “shadows” of the state-space
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matrices, so that an element in these matrices that is equal to NaN
indicates a freely adjustable parameter, while a numerical value
in these matrices indicates that the corresponding system matrix
element is fixed (nonadjustable) to this value.

idss
Properties

• SSParameterization has the following possible values:

- 'Free': Means that all parameters in A, B, and C are freely
adjustable, and the parameterizations of D, K, and X0 depend on
the properties 'nk', 'DisturbanceModel', and 'InitialState'.

- 'Canonical': Means that A and C are parameterized as an
observer canonical form. The details of this parameterization
depend on the property 'CanonicalIndices'. The B matrix is
always fully parameterized, and the parameterizations of D, K,
and X0 depend on the properties 'nk', 'DisturbanceModel', and
'InitialState'.

- 'Structured': Means that the parameterization is determined by
the properties (the structure matrices) 'As', 'Bs', 'Cs', 'Ds',
'Ks', and 'X0s'. A NaN in any position in these matrices denotes a
freely adjustable parameter, and a numeric value denotes a fixed
and nonadjustable parameter.

• nk: A row vector with as many entries as the number of input
channels. The entry number k denotes the time delay from input
number k to y(t). This property is relevant only for 'Free' and
'Canonical' parameterizations. If any delay is larger than 1, the
structure of the A, B, and C matrices will accommodate this delay, at
the price of a higher-order model.

• DisturbanceModel has the following possible values:

- 'Estimate': Means that the K matrix is fully parameterized.

- 'None': Means that the K matrix is fixed to zero. This gives a
so-called output-error model, since the model output depends on
past inputs only.

- 'Fixed': Means that the K matrix is fixed to the current nominal
values.
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• InitialState has the following possible values:

- 'Estimate': Means that X0 is fully parameterized.

- 'Zero': Means that X0 is fixed to zero.

- 'Fixed': Means that X0 is fixed to the current nominal value.

- 'Backcast': The value of X0 is estimated by the identification
routines as the best fit to data, but it is not stored.

- 'Auto': Gives an automatic and data-dependent choice among
'Estimate', 'Zero', and 'Backcast'.

• A, B, C, D, K, and X0: The state-space matrices that can be set
and retrieved at any time. These contain both fixed values and
estimated/nominal values.

• dA, dB, dC, dD, dK, and dX0: The estimated standard deviations
of the state-space matrices. These cannot be set, only retrieved.
Note that these are not defined for an idss model with 'Free'
SSParameterization. You can then convert the parameterization to
'Canonical' and study the uncertainties of the matrix elements in
that form.

• As, Bs, Cs, Ds, Ks, and X0s: These are the structure matrices that
have the same sizes as A, B, C, etc., and show the freely adjustable
parameters as NaNs in the corresponding position. These properties
are used to define the model structure for 'SSParameterization' =
'Structured'. They are always defined, however, and can be studied
also for the other parameterizations.

• CanonicalIndices: Determines the details of the canonical
parameterization. It is a row vector of integers with as many
entries as there are outputs. They sum up to the system order.
This is the so-called pseudocanonical multiindex with an exact
definition, for example, on page 132 in Ljung (1999). A good
default choice is 'Auto'. This property is relevant only for the
canonical parameterization case. Note however, that for 'Free'
parameterizations, the estimation algorithms also store a canonically
parameterized model to handle the model uncertainty.
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In addition to these properties, idss objects also have all the properties
of the idmodel object. See idmodel properties, Algorithm Properties,
and EstimationInfo.

Note that all properties can be set and retrieved either by the set and
get commands or by subscripts. Autofill applies to all properties and
values, and these are case insensitive.

m.ss='can'
set(m,'ini','z')
p = eig(m.a)

For a complete list of property values, use get(m). To see possible value
assignments, use set(m). See also idprops idss.

Examples Define a continuous-time model structure corresponding to

with initial values

and estimate the free parameters.

A = [-0.2, 0; 0, -0.3]; B = [2;4]; C=[1, 1]; D = 0
m0 = idss(A,B,C,D);
m0.As = [NaN,0;0,NaN];
m0.Bs = [NaN;NaN];
m0.Cs = [1,1];
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m0.Ts = 0;
m = pem(z,m0);

Estimate a model in free parameterization. Convert it to continuous
time, then convert it to canonical form and continue to fit this model
to data.

m1 = n4sid(data,3);
m1 = d2c(m1);
m1.ss ='can';
m = pem(data,m1);

All of this can be done at once by

m = pem(data,3,'ss','can','ts',0)

See Also n4sid

pem

setstruc
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Purpose Transform iddata objects from frequency to time domain

Syntax dat = ifft(Datf)

Description ifft transforms a frequency-domain iddata object to the time domain.
It requires the frequencies on Datf to be equally spaced from frequency
0 to the Nyquist frequency. This means that if there are N frequencies in
Datf and the time sampling interval is Ts, then

Datf.Frequency = [0:df:F], where F is pi/Ts if N is odd and
F = pi/Ts*(1-1/N) if N is even.

See Also iddata

fft
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Purpose Plot impulse response with confidence interval

Syntax impulse(m)
impulse(data)
impulse(m,'sd',sd,Time)
impulse(m,'sd',sd,Time,'fill')
impulse(data,'sd',sd,'pw',na,Time)
impulse(m1,m2,...,dat1, ...,mN,Time,'sd',sd)
impulse(m1,'PlotStyle1',m2,'PlotStyle2',...,dat1,'PlotStylek',...,
mN,'PlotStyleN',Time,'sd',sd)
[y,t,ysd] = impulse(m)
mod = impulse(data)

Description impulse can be applied both to idmodels and to iddata sets, as well as
to any mixture.

For a discrete-time idmodel m, the impulse response y and, when
required, its estimated standard deviation ysd, are computed using sim.
When called with output arguments, y, ysd, and the time vector t are
returned. When impulse is called without output arguments, a plot of
the impulse response is shown. If sd is given a value larger than zero, a
confidence region around zero is drawn. It corresponds to the confidence
of sd standard deviations. In the plots, the impulse is inversely scaled
with the sampling interval so that it has the same energy regardless
of the sampling interval.

Adding an argument 'fill' among the input arguments gives an
uncertainty region marked by a filled area rather than by dash-dotted
lines.

Setting the Time Interval

You can specify the start time T1 and the end time T2 using Time= [T1
T2]. If T1 is not given, it is set to -T2/4. The negative time lags (the
impulse is always assumed to occur at time 0) show possible feedback
effects in the data when the impulse is estimated directly from data. If
Time is not specified, a default value is used.
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Estimating the Impulse Response from data

For an iddata set data, impulse(data) estimates a high-order,
noncausal FIR model after first having prefiltered the data so that the
input is “as white as possible.” The impulse response of this FIR model
and, when asked for, its confidence region, are then plotted. Note that
it is not always possible to deliver the demanded time interval when
the response is estimated. A warning is then issued. When called with
an output argument, impulse, in the iddata case, returns this FIR
model, stored as an idarx model. The order of the prewhitening filter
can be specified by the property name/property value pair 'pw'/na. The
default value is na = 10.

Several Models/Data Sets

Any number and any mixture of models and data sets can be used as
input arguments. The responses are plotted with each input/output
channel (as defined by the model and data set InputName and
OutputName properties) as a separate plot. Colors, line styles, and
marks can be defined by PlotStyle values. These are the same as for
the regular plot command, as in

impulse(m1,'b-*',m2,'y--',m3,'g')

Noise Channels

The noise input channels in m are treated as follows: Consider a model m
with both measured input channels u (nu channels) and noise channels
e (ny channels) with covariance matrix

where L is a lower triangular matrix. Note that m.NoiseVariance =
. The model can also be described with unit variance, normalized

noise source v:
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• impulse(m) plots the impulse response of the transfer function G.

• impulse(m('n')) plots the impulse response of the transfer function
H (ny inputs and ny outputs). The input channels have names
e@yname, where yname is the name of the corresponding output.

• If m is a time series, that is nu = 0,impulse(m), plots the impulse
response of the transfer function H.

• impulse(noisecnv(m)) plots the impulse response of the transfer
function [G H] (nu+ny inputs and ny outputs). The noise input
channels have names e@yname, where yname is the name of the
corresponding output.

• impulse(noisecnv(m,'norm'))p lots the impulse response of the
transfer function [G HL] (nu+ny inputs and ny outputs). The noise
input channels have names v@yname, where yname is the name of
the corresponding output.

Arguments If impulse is called with a single idmodel m, the output argument y is a
3-D array of dimension Nt-by-ny-by-nu. Here Nt is the length of the time
vector t, ny is the number of output channels, and nu is the number of
input channels. Thus y(:,ky,ku) is the response in output ky to an
impulse in the kuth input channel.

ysd has the same dimensions as y and contains the standard deviations
of y.

If impulse is called with an output argument and a single data set in
the input arguments, the output is returned as an idarx model mod
containing the high-order FIR model and its uncertainty. By calling
impulse with mod, the responses can be displayed and returned without
your having to redo the estimation.

Examples impulse(data,'sd',3) estimates and plots the impulse response. To
take a closer look at subsystems, do the following:

mod = impulse(data)
impulse(mod(2,3),'sd',3)
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See Also cra

step

12-195



init

Purpose Set or randomize initial parameter values

Syntax m = init(m0)
m = init(m0,R,pars,sp)

Description This function randomizes initial parameter estimates for model
structures m0 for any idmodel, idnlarx, and idnlhw model object. m is
the same model structure as m0, but with a different nominal parameter
vector. This vector is used as the initial estimate by pem.

The parameters are randomized around pars with variances given by
the row vector R. Parameter number k is randomized as pars(k) +
e*sqrt(R(k)), where e is a normal random variable with zero mean
and a variance of 1. The default value of R is all ones, and the default
value of pars is the nominal parameter vector in m0.

Only models that give stable predictors are accepted. If sp = 'b', only
models that are both stable and have stable predictors are accepted.

sp = 's' requires stability only of the model, and sp = 'p' requires
stability only of the predictor. sp = 'p' is the default.

Sufficiently free parameterizations can be stabilized by direct means
without any random search. To just stabilize such an initial model, set
R = 0. With R > 0, randomization is also done.

For model structures where a random search is necessary to find a
stable model/predictor, a maximum of 100 trials is made by init. It
can be difficult to find a stable predictor for high-order systems by
trial and error.

See Also idnlarx

idnlhw

idmodel

pem
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Purpose Determine whether model or data set contains real parameters or data

Syntax isreal(Data)
isreal(Model)

Description Data is an iddata set and Model is any idmodel. The isreal function
returns 1 if all parameters of the model are real and if all signals of
the data set are real.

See Also realdata
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Purpose Estimate AR model using instrumental variable method returning
idpoly object

Syntax m = ivar(y,na)
m = ivar(y,na,nc,maxsize)

Description The parameters of an AR model structure

are estimated using the instrumental variable method. y is the signal
to be modeled, entered as an iddata object (outputs only). na is the
order of the A polynomial (the number of A parameters). The resulting
estimate is returned as an idpoly model m. The routine is for scalar
time-domain signals only.

In the above model, is an arbitrary process, assumed to be a moving
average process of order nc, possibly time varying. (Default is nc =
na.) Instruments are chosen as appropriately filtered outputs, delayed
nc steps.

The optional argument maxsize is explained under Algorithm
Properties.

Examples Compare spectra for sinusoids in noise, estimated by the IV method and
by the forward-backward least squares method.

y = iddata(sin([1:500]'*1.2) + sin([1:500]'*1.5) +
0.2*randn(500,1),[]);
miv = ivar(y,4);
mls = ar(y,4);
bode(miv,mls)

References Stoica, P., et al., Optimal Instrumental variable estimates of the
AR-parameters of an ARMA process, IEEE Trans. Autom. Control,
Vol. AC-30, 1985, pp. 1066-1074.
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See Also Algorithm Properties

EstimationInfo

ar

arx

etfe

idpoly

pem

spa

step
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Purpose Compute loss functions for sets of output-error model structures

Syntax v = ivstruc(ze,zv,NN)
v = ivstruc(ze,zv,NN,p,maxsize)

Description NN is a matrix that defines a number of different structures of the ARX
type. Each row of NN is of the form

nn = [na nb nk]

with the same interpretation as described for arx. See struc for easy
generation of typical NN matrices for single-input systems.

ze and zv are iddata objects containing output-input data. Only
time-domain data is supported. Models for each model structure defined
in NN are estimated using the instrumental variable (IV) method on
data set ze. The estimated models are simulated using the inputs
from data set zv. The normalized quadratic fit between the simulated
output and the measured output in zv is formed and returned in v. The
rows below the first row in v are the transpose of NN, and the last row
contains the logarithms of the condition numbers of the IV matrix

A large condition number indicates that the structure is of unnecessarily
high order (see page 498 in Ljung (1999)).

The information in v is best analyzed using selstruc.

If p is equal to zero, the computation of condition numbers is suppressed.
For the use of maxsize, see Algorithm Properties.

The routine is for single-output systems only.

Note The IV method used does not guarantee that the models obtained
are stable. The output-error fit calculated in v can then be misleading.
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Examples Compare the effect of different orders and delays, using the same data
set for both the estimation and validation.

v = ivstruc(z,z,struc(1:3,1:2,2:4));
nn = selstruc(v)
m = iv4(z,nn);

Algorithm A maximum-order ARX model is computed using the least squares
method. Instruments are generated by filtering the input(s) through
this model. The models are subsequently obtained by operating on
submatrices in the corresponding large IV matrix.

See Also arxstruc

iv4

selstruc

struc
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Purpose Estimate parameters of ARX model using instrumental variable method
with arbitrary instruments returning idpoly or idarx object

Syntax m = ivx(data,orders,x)
m = ivx(data,orders,x,maxsize)

Description ivx is a routine analogous to the iv4 routine, except that you can use
arbitrary instruments. These are contained in the matrix x. Make this
the same size as the output, data.y. In particular, if data contains
several experiments, x must be a cell array with one matrix/vector for
each experiment. The instruments used are then analogous to the
regression vector itself, except that y is replaced by x.

Note that ivx does not return any estimated covariance matrix for m,
since that requires additional information. m is returned as an idpoly
object for single-output systems and as an idarx object for multioutput
systems.

Use iv4 as the basic IV routine for ARX model structures. The main
interest in ivx lies in its use for nonstandard situations, for example,
when there is feedback present in the data, or when other instruments
need to be tried out. Note that there is also an IV version that
automatically generates instruments from certain filters you define
(type help iv).

References Ljung (1999), page 222.

See Also Algorithm Properties

EstimationInfo

arx

idarx

idpoly
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iv4

pem
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Purpose Estimate ARX model using four-stage instrumental variable method
returning idpoly or idarx object

Syntax m = iv4(data,orders)
m = iv4(data,'na',na,'nb',nb,'nk',nk)
m= iv4(data,orders,'Property1',Value1,...,'PropertyN',ValueN)

Description This function is an alternative to arx and the use of the arguments
is entirely analogous to the arx function. The main difference is that
the procedure is not sensitive to the color of the noise term in the
model equation.

Examples Here is an example of a two-input, one-output system with different
delays on the inputs and .

z = iddata(y, [u1 u2]);
nb = [2 2];
nk = [0 2];
m= iv4(z,[2 nb nk]);

Algorithm The first stage uses the arx function. The resulting model generates
the instruments for a second-stage IV estimate. The residuals obtained
from this model are modeled as a high-order AR model. At the fourth
stage, the input-output data is filtered through this AR model and
then subjected to the IV function with the same instrument filters as
in the second stage.

For the multioutput case, optimal instruments are obtained only if
the noise sources at the different outputs have the same color. The
estimates obtained with the routine are reasonably accurate, however,
even in other cases.

References Ljung (1999), equations (15.21) through (15.26).
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See Also Algorithm Properties

EstimationInfo

arx

idarx

idpoly

ivx

pem
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Purpose Linear approximation of nonlinear ARX and Hammerstein-Wiener
models for given input

Syntax lm = linapp(nlmodel,u)
lm = linapp(nlmodel,umin,umax,nsample)

Arguments nlmodel
Name of the idnlarx or idnlhw model object you want to linearize.

u
Input signal as an iddata object or a real matrix.

Dimensions of u must match the number of inputs in nlmodel.

[umin,umax]
Minimum and maximum input values for generating white-noise
input with a magnitude in this rectangular range. The sample
length of this signal is nsample.

nsample
Optional argument when you specify [umin,umax]. Specified the
length of the white-noise input. Default: 1024.

Description lm = linapp(nlmodel,u) computes a linear approximation for a
nonlinear black-box model for a given input.

lm = linapp(nlmodel,umin,umax,nsample) computes a linear
approximation of a nonlinear black-box model for a generated input.
The input signal is specified by the magnitude range and (optionally)
the number of samples.

The following table summarizes the linear model objects that store the
linear approximation for each type of nonlinear model and the number
of outputs.
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Nonlinear Model
Type

Number of Outputs Linear Model
Object

idnlarx Single output idpoly

idnlarx Multiple outputs idarx

idnlhw Single output idpoly

idnlhw Multiple outputs idss

Remarks linapp computes the best linear approximation—in an
mean-square-error sense—of a nonlinear ARX or Hammerstein-Wiener
model for a given input or a randomly generated input in a specified
range.

For Hammerstein-Wiener models, linapp differs from lintan, which
linearizes in a small neighborhood of a constant input using series
expansion.

See Also idarx

idnlarx

idnlhw

idpoly

idss

lintan
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Purpose Specify to estimate nonlinear ARX model that is linear in (nonlinear)
custom regressors

Syntax lin=linear
lin=linear('Parameters',Par)

Description linear is an object that specifies that the nonlinear ARX model is
linear in custom (nonlinear) regressors. You define custom regressors
using customreg.

lin=linear instantantiates the linear object.

lin=linear('Parameters',Par) instantantiates the linear object and
specifies optional values in the Par structure. For more information
about this structure, see “linear Properties” on page 12-208.

Remarks linear is a linear (affine) function y F x= ( ) , defined as follows:

F x xL d( ) = +

y is scalar, and x is a 1-by-m vector.

Use evaluate(lin,x) to compute the value of the function defined by
the linear object lin at x.

linear
Properties

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List Parameters values
get(lin)
% Get value of Parameters property
lin.Parameters

You can also use set or dot notation to assign property values to the
object.
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The Parameters property is a structure. To set the values of this
structure to MATLAB variable values L and d, you can use the following
syntax, for example:

Par=struct('LinearCoef',L,
'OutputOffset',d);

C.Parameters=Par;

Property Name Description

Parameters Structure containing the following fields:

• LinearCoef: m-by-1 vector L.

• OutputOffset: Scalar d.

Examples To specify that the nonlinear ARX model is linear in custom regressors,
first specify one or more customreg objects. Then, include the linear
object in the nlarx estimator command.

For example, to estimate a nonlinear ARX model linear in the custom
regressors that might be nonlinear in input u and output y data, use
the following syntax:

m=nlarx(Data,Orders,linear,'custom',{'y(t-1)*u(t-2)'});

See Also customreg

nlarx
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Purpose Tangent linearization of Hammerstein-Wiener models about operating
point

Syntax lm = lintan(nlmodel)
lm = lintan(nlmodel,u)

Arguments nlmodel
Name of the idnlhw model object you want to linearize.

u
Constant input signal, given as a scalar value or a vector. The
length of this vector must match the number of inputs in nlmodel.

Default: 0.

Description lm = lintan(nlmodel) computes a linearization of a nonlinear idnlhw
model around an equilibrium point such that the nlmodel output is
constant when the input is constant (after transient effects subside).

lm = lintan(nlmodel,u) computes a linearization for a nonzero value
of the constant input.

The following table summarizes the linear model objects that store the
linear approximation for the number of outputs.

Number of Outputs Linear Model Object

Single output idpoly

Multiple outputs idss

Remarks lintan computes a linear model for inputs that vary in a small
(infinitesimal) neighborhood of a constant input. This linearization
method is based on performing a series expansion of a function.

For linear approximations that must perform accurately over larger
input ranges, use linapp.
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See Also idnlhw

idpoly

idss

linapp
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LTI Commands

Purpose Allow direct calls to LTI commands from idmodel objects (requires
Control System Toolbox)

Syntax append, augstate, balreal, canon, d2d, feedback, inv, minreal,
modred, norm, parallel, series, ss2ss

Description If you have Control System Toolbox, most of the relevant LTI commands,
listed above, can be directly applied to any idmodel (idarx, idgrey,
idpoly, idss). You can also use the overloaded operations +, -, and *.
The same operations are performed and the result is delivered as an
idmodel. The original covariance information is lost most of the time,
however.

Examples You have two more or less identical processes connected in series.
Estimate a model for one of them, and use that to form an initial
estimate for a model of the connected process.

% data concerns one of the processes
m = pem(data)
% data2 is from the entire connected process
m2 = pem(data2,m*m)
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Purpose Merge data sets into one iddata object

Syntax dat = merge(dat1,dat2,....,datN)

Description dat collects the data sets in dat1,.. datN into one iddata object, with
several experiments. The number of experiments in dat will be the sum
of the number of experiments in datk. For the merging to be allowed, a
number of conditions must be satisfied:

• All of datk must have the same number of input channels, and the
InputNames must be the same.

• All of datk must have the same number of output channels, and the
OutputNames must be the same. If some input or output channel is
lacking in one experiment, it can be replaced by a vector of NaNs to
conform with these rules.

• If the ExperimentNames of datk have been specified as something
other than the default 'Exp1', 'Exp2', etc., they must all be unique.
If default names overlap, they are modified so that dat will have a
list of unique ExperimentNames.

The sampling intervals, the number of observations, and the input
properties (Period, InterSample) might be different in the different
experiments.

You can retrieve the individual experiments by using the command
getexp. You can also retrieve them by subreferencing with a fourth
index.

dat1 = dat(:,:,:,ExperimentNumber) or
dat1 = dat(:,:,:,ExperimentName)

Storing multiple experiments as one iddata object can be very useful
for handling experimental data that has been collected on different
occasions, or when a data set has been split up to remove “bad” portions
of the data. All the toolbox’s routines accept multiple-experiment data.
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Examples Bad portions of data have been detected around sample 500 and
between samples 720 to 730. Cut out these bad portions and form
a multiple-experiment data set that can be used to estimate models
without the bad data destroying the estimate.

dat = merge(dat(1:498),dat(502:719),dat(719:1000))
m = pem(dat)

Use the first two parts to estimate the model and the third one for
validation.

m = pem(getexp(dat,[1,2]));
compare(getexp(dat,3),m)

See also iddemo #9.

See Also iddata

getexp
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Purpose Merge estimated idmodel models

Syntax m = merge(m1,m2,....,mN)
[m,tv] = merge(m1,m2)

Description The models m1,m2,...,mN must all be of the same structure, just
differing in parameter values and covariance matrices. Then m is the
merged model, where the parameter vector is a statistically weighted
mean (using the covariance matrices to determine the weights) of the
parameters of mk.

When two models are merged,

[m, tv] = merge(m1,m2)

returns a test variable tv. It is distributed with n degrees of freedom,
if the parameters of m1 and m2 have the same means. Here n is the
length of the parameter vector. A large value of tv thus indicates that
it might be questionable to merge the models.

Merging models is an alternative to merging data sets and estimating a
model for the merged data. Consequently,

m1 = arx(z1,[2 3 4]);
m2 = arx(z2,[2 3 4]);
ma = merge(m1,m2);

and

mb = arx(merge(z1,z2),[2 3 4]);

lead to models ma and mb that are related and should be close. The
difference is that merging the data sets assumes that the signal-to-noise
ratios are about the same in the two experiments. Merging the models
allows one model to be much more uncertain, for example, due to more
disturbances in that experiment. If the conditions are about the same,
we recommend that you merge data rather than models, since this is
more efficient and typically involves better conditioned calculations.
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Purpose Set directory for storing idprefs.mat containing GUI startup
information

Syntax midprefs
midprefs(path)

Description The graphical user interface ident allows a large number of variables
for customized choices. These include the window layout, the default
choices of plot options, and names and directories of the four most
recent sessions with ident. This information is stored in the file
idprefs.mat, which should be placed on the user’s MATLABPATH. The
default, automatic location for this file is in the same directory as the
user’s startup.m file.

midprefs is used to select or change the directory where you store
idprefs.mat. Either type midprefs and follow the instructions, or give
the directory name as the argument. Include all directory delimiters, as
in the PC case

midprefs('c:\matlab\toolbox\local\')

or in the UNIX case

midprefs('/home/ljung/matlab/')

See Also ident
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Purpose Reconstruct missing input and output data

Syntax Datae = misdata(Data)
Datae = misdata(Data,Model)
Datae = misdata(Data,Maxiter,Tol)

Description Data is time-domain input-output data in the iddata object format.
Missing data samples (both in inputs and in outputs) are entered as
NaNs.

Datae is an iddata object where the missing data has been replaced
by reasonable estimates.

Model is any idmodel (idarx, idgrey, idpoly, idss) used for the
reconstruction of missing data.

If no suitable model is known, it is estimated in an iterative fashion
using default order state-space models.

Maxiter is the maximum number of iterations carried out (the default
is 10). The iterations are terminated when the difference between two
consecutive data estimates differs by less than tol%. The default value
of tol is 1.

Algorithm For a given model, the missing data is estimated as parameters so as to
minimize the output prediction errors obtained from the reconstructed
data. See Section 14.2 in Ljung (1999). Treating missing outputs as
parameters is not the best approach from a statistical point of view, but
is a good approximation in many cases.

When no model is given, the algorithm alternates between
estimating missing data and estimating models, based on the current
reconstruction.
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Purpose Store neural network object created in Neural Network Toolbox for
estimating nonlinear ARX and Hammerstein-Wiener models

Syntax n=neuralnet(Network)

Description neuralnet is an object that stores the neural network nonlinearity
estimator for estimating nonlinear ARX and Hammerstein-Wiener
models. Requires Neural Network Toolbox.

You can use the constructor to create the nonlinearity object, as follows:

n=neuralnet(Network) creates a neural network nonlinearity
estimator based on the network object you created in Neural Network
Toolbox.

Use evaluate(n,x) to compute the value of the function defined by
the neuralnet object n at x.

Remarks Use neuralnet to define a nonlinear function y F x= ( ) , where F is a
multilayer feedforward neural network, as defined in Neural Network
Toolbox.

y is a scalar and x is an m-dimensional row vector.

If you purchased Neural Network Toolbox, you can create a multilayer
feedforward neural network using newff:

ff = newff(MV,[nL_1,nL_2,..,nL_r],{tf_1,tf_2,...,tf_r})

where MV is an m-by-2 matrix containing minimum and maximum
values of x.

There are r layers and nL_k neurons in the kth layer. In this application,
the last layer must have one neuron, such that nL_r=1. The transfer
function (or unit function) in the kth layer is tf_k.

If m is unknown at the time of creation of the network, use MV =
zeros(0,2). After this initialization, m is adjusted to the estimation
data by nlarx or nlhw.
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neuralnet
Properties

You include the property as an argument in the constructor to specify
the object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List Network property value
get(n)
n.Network

You can use dot notation to assign property values to the object. set is
not supported for MCOS objects.

For example, the following two commands are equivalent:

n.Network=net_obj

Property Name Description

Network Multilayer feedforward neural network object, defined in
Neural Network Toolbox using newff.

Examples Use neuralnet to specify the neural network nonlinearity estimator in
nonlinear ARX and Hammerstein-Wiener models. For example:

% Create network object using Neural Network Toolbox
net_obj=newff(zeros(0,2),[6 8 1],...

{'logsig','logsig','purelin'})
% Estimate nonlinear ARX model using
% net_obj as the neural network
m=nlarx(Data,Orders,neuralnet(net_obj));

See Also nlarx

nlhw

12-219



nkshift

Purpose Shift data sequences

Syntax Datas = nkshift(Data,nk)

Description Data contains input-output data in the iddata format.

nk is a row vector with the same length as the number of input channels
in Data.

Datas is an iddata object where the input channels in Data have been
shifted according to nk. A positive value of nk(ku) means that input
channel number ku is delayed nk(ku) samples.

nkshift supports both frequency- and time-domain data. For
frequency-domain data it multiplies with to obtain the
same effect as shifting in the time domain. For continuous-time
frequency-domain data (Ts = 0), nk should be interpreted as the shift
in seconds.

nkshift lives in symbiosis with the InputDelay property of idmodel:

m1 = pem(dat,4,'InputDelay',nk)

is related to

m2 = pem(nkshift(dat,nk),4);

such that m1 and m2 are the same models, but m1 stores the delay
information for use when frequency responses, etc., are computed.

Note the difference from the idss and idpoly property nk.

m3 = pem(dat,4,'nk',nk)

gives a model that itself explicitly contains a delay of nk samples.

See Also Algorithm Properties

idss
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Purpose Estimate nonlinear ARX models

Syntax m=nlarx(data,[na nb nk],Nonlinearity)
m=nlarx(data,[na nb nk],P1,V1,...,PN,VN)

Arguments data
Time-domain iddata model object.

[na nb nk]
na is the number of output terms, nb is the number of input terms,
and nk is the input delays from each input to output.

For ny outputs and nu inputs, [na nb nk] has as many rows as
there are outputs. In this case, na is an ny-by-ny matrix whose
i-jth entry gives the number of delayed jth outputs used to
compute the ith output. nb and nk are ny-by-nu matrices.

These orders specify the regressors and the predicted output is
the following function of these regressors:

F y t y t na u t nk u t nk nb−( ) −( ) −( ) − − +( )( )1 1, , , , ,K K

Nonlinearity
Specifies the nonlinearity estimator object as one of the following:
sigmoidnet (default), wavenet, treepartition, customnet,
neuralnet, and linear.

For ny outputs, Nonlinearity is an ny-by-1 array, such as
[sigmoidnet;wavenet]. However, if you specify a scalar object,
this nonlinearity object applies to all outputs.

For more information about nonlinearity properties, see the
corresponding reference pages.

Description m=nlarx(data,[na nb nk],Nonlinearity) constructs and estimates a
nonlinear ARX model with orders [na nb nk] and Nonlinearity. data
is the estimation data set.
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m=nlarx(data,[na nb nk],P1,V1,...,PN,VN) constructs and
estimates the model with additional property-value pairs. For
more information about model idnlarx model properties, see the
corresponding reference pages.

Examples The following commands construct and estimate a nonlinear ARX
model:

load iddata1
m1=nlarx(z1,[4 2 1],'wave','nlr',[1:3])

To perturb the parameters slightly and avoid being trapped in local
minima, use the init command:

m2=init(m1)

Estimate the model with perturbed initial parameter values, use the
following command:

m2=nlarx(z1,m2)

See Also addreg

customreg

getreg

idnlarx

init

polyreg
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Purpose Estimate Hammerstein-Wiener models

Syntax m=nlarx(data,[na nb nk],Nonlinearity)
m=nlarx(data,[na nb nk],P1,V1,...,PN,VN)

Arguments data
Time-domain iddata model object.

[nb nf nk]
Model orders and input delays, where nb is the number of zeros
plus 1, nf is the number of poles, and nk is the delay from input to
output in terms of the number of samples.

For nu inputs and ny outputs, nb, nf and, nk are ny-by-nu matrices
whose i-jth entry specifies the orders and delay of the transfer
function from the jth input to the ith output.

InputNL and OutputNL
Specify the input and output nonlinearity estimator objects as
one of the following: pwlinear (default), deadzone, wavenet,
saturation, customnet, sigmoidnet, and unitgain. The
nonlinearity estimator objects have properties that you can set
in the constructor, as follows:

m=nlhw(data,[2 2 1],sigmoidnet('num',5),deadzone([-1,2]))

To use default nonlinearity properties, specify the nonlinearity
object name as a string. For example:

m=nlhw(data,[2 2 1],'sigmoidnet','deadzone')
m=nlhw(data,[2 2 1],'sig','dead') % Abbreviated

The estimator unitgain (can also be entered as []) means no
nonlinearity. Thus, m=nlhw(data,[2 2 1],'saturation','[]').
For more information about nonlinearity properties, see the
corresponding reference pages.
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Description m=nlarx(data,[na nb nk],Nonlinearity) constructs and estimates a
nonlinear ARX model with orders [na nb nk] and Nonlinearity. data
is the estimation data set.

m=nlarx(data,[na nb nk],P1,V1,...,PN,VN) constructs and
estimates the model with additional property-value pairs. For
more information about model idnlarx model properties, see the
corresponding reference pages.

Examples The following commands construct and estimate a nonlinear ARX
model:

load iddata1
m1=nlarx(z1,[4 2 1],'wave','nlr',[1:3])

To perturb the parameters slightly and avoid being trapped in local
minima, use the init command:

m2=init(m1)

Estimate the model with perturbed initial parameter values, use the
following command:

m2=nlarx(z1,m2)

See Also idnlhw

init

pem
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Purpose Convert idmodel with noise channels to model with only measured
channels

Syntax mod1 = noisecnv(mod)
mod2 = noisecnv(mod,'norm')

Description mod is any idmodel, idarx, idgrey, idpoly, or idss.

The noise input channels in mod are converted as follows: Consider a
model with both measured input channels u (nu channels) and noise
channels e (ny channels) with covariance matrix

where L is a lower triangular matrix. Note that mod.NoiseVariance
= . The model can also be described with unit variance, normalized
noise source v:

• mod1 = noisecnv(mod) converts the model to a representation of
the system [G H] with nu+ny inputs and ny outputs. All inputs are
treated as measured, and mod1 does not have any noise model. The
former noise input channels have names e@yname, where yname is the
name of the corresponding output.

• mod2 = noisecnv(mod,'norm') converts the model to a
representation of the system [G HL] with nu+ny inputs and ny
outputs. All inputs are treated as measured, and mod2 does not
have any noise model. The former noise input channels have names
v@yname, where yname is the name of the corresponding output. Note
that the noise variance matrix factor L typically is uncertain (has a
nonzero covariance). This is taken into account in the uncertainty
description of mod2.

12-225



noisecnv

• If mod is a time series, that is, nu = 0, mod1 is a model that describes
the transfer function H with measured input channels. Analogously,
mod2 describes the transfer function HL.

Note the difference with subreferencing:

• mod('m') gives a description of G only.

• mod('n') gives a description of the noise model characteristics as a
time-series model, that is, it describes H and also the covariance of e.
In contrast, noisecnv(m('n')) describes just the transfer function
H. To obtain a description of the normalized transfer function HL,
use noisecnv(m('n'),'norm').

Converting the noise channels to measured inputs is useful to study the
properties of the individual transfer functions from noise to output. It is
also useful for transforming idmodel objects to representations that do
not handle disturbance descriptions explicitly.
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Purpose Set step size for numerical differentiation

Syntax nds = nuderst(pars)

Description The function pem uses numerical differentiation with respect to the
model parameters when applied to state-space structures. The same
is true for many functions that transform model uncertainties to other
representations.

The step size used in these numerical derivatives is determined by the
M-file nuderst. The output argument nds is a row vector whose kth
entry gives the increment to be used when differentiating with respect
to the kth element of the parameter vector pars.

The default version of nuderst uses a very simple method. The step
size is the maximum of times the absolute value of the current
parameter and . You can adjust this to the actual value of the
corresponding parameter by editing nuderst. Note that the nominal
value, for example 0, of a parameter might not reflect its normal size.
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Purpose Plot Nyquist curve of frequency response with confidence interval

Syntax nyquist(m)
[fr,w] = nyquist(m)
[fr,w,covfr] = nyquist(m)
nyquist(m1,m2,m3,...,w)
nyquist(m1,'PlotStyle1',m2,'PlotStyle2',...)
nyquist(m1,m2,m3,..'sd*5',sd,'mode',mode)

Description nyquist computes the complex-valued frequency response of idmodel
and idfrd models. When invoked without left-hand arguments,
nyquist produces a Nyquist plot on the screen, that is, a graph of the
frequency response’s imaginary part against its real part.

The argument m is an arbitrary idmodel or idfrd model. This model
can be continuous or discrete, and SISO or MIMO. The InputNames and
OuputNames of the models are used to plot the responses for different
I/O channels in separate plots. Pressing the Enter key advances the
plot from one input-output pair to the next one. You can select specific
I/O channels with normal subreferencing: m(ky,ku). With mode =
'same', all plots are given in the same diagram.

nyquist(m,w) explicitly specifies the frequency range or frequency
points to be used for the plot. To focus on a particular frequency interval
[wmin,wmax], set w = {wmin,wmax}. To use particular frequency points,
set w to the vector of desired frequencies. Use logspace to generate
logarithmically spaced frequency vectors. All frequencies should be
specified in rad/s.

nyquist(m1,m2,...,mN) or nyquist(m1,m2,...mN,w) plots the Bode
responses of several idmodels or idfrd models on a single figure. The
models can be mixes of different sizes, and continuous or discrete. The
sorting of the plots is based on the InputNames and OutputNames.

nyquist(m1,'PlotStyle1',...,mN,'PlotStyleN') further specifies
which color, line style, and/or marker should be used to plot each
system, as in

nyquist(m1,'r--',m2,'gx')
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When sd is specified as a number larger than zero, confidence regions
are also plotted. These are ellipses in the complex plane and correspond
to the region where the true response at the frequency in question is to
be found with a confidence corresponding to sd standard deviations (of
the Gaussian distribution).

If the argument indicating standard deviations is given as in 'sd+5', a
confidence region is plotted for every 5:th frequency, marking the center
point by '+'. The default is 'sd+10'.

Note that the frequencies cannot be specified for idfrd objects. For
those, the plot and response are calculated for the internally stored
frequencies. If the frequencies w are specified when several models are
treated, they will apply to all non-idfrd models in the list. If you want
different frequencies for different models, you should first convert them
to idfrd objects using the idfrd command.

For time-series models (no input channels), the Nyquist plot is not
defined.

Arguments When nyquist is called with a single system and output arguments,

fr = nyquist(m,w) or [fr,w,covfr] = nyquist(m)

no plot is drawn on the screen. If m has ny outputs and nu inputs, and
w contains Nw frequencies, then fr is an ny-by-nu-by-Nw array such
that fr(ky,ku,k) gives the complex-valued frequency response from
input ku to output ky at the frequency w(k). For a SISO model, use
fr(:) to obtain a vector of the frequency response. The uncertainty
information covfr is a 5-D array where covfr(ky,ku,k,:,:)) is the
2-by-2 covariance matrix of the response from input ku to output ky at
frequency w(k). The 1,1 element is the variance of the real part, the
2,2 element is the variance of the imaginary part, and the 1,2 and 2,1
elements are the covariance between the real and imaginary parts.

squeeze(covfr(ky,ku,k,:,:)) gives the covariance matrix of the
corresponding response.
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If m is a time series (no input), fr is returned as the (power) spectrum
of the outputs, an ny-by-ny-by-Nw array. Hence fr(:,:,k) is the
spectrum matrix at frequency w(k). The element fr(k1,k2,k) is the
cross spectrum between outputs k1 and k2 at frequency w(k). When k1
= k2, this is the real-valued power spectrum of output k1. The covfr
is then the covariance of the spectrum fr, so that covfr(k1,k1,k) is
the variance of the power spectrum of output k1 at frequency w(k). No
information about the variance of the cross spectra is normally given.
(That is, covfr(k1,k2,k) = 0 for k1 not equal to k2.)

If the model m is not a time series, use fr = nyquist(m('n')) to obtain
the spectrum information of the noise (output disturbance) signals.

Examples g = spa(data)
m = n4sid(data,3)
nyquist(g,m,3)

See Also bode

etfe

ffplot

freqresp

idfrd

spa

spafdr
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Purpose Estimate state-space models using subspace method returning idss
object

Syntax m = n4sid(data)
m = n4sid(data,order,'Property1',Value1,...,'PropertyN',ValueN)

Description The function n4sid estimates models in state-space form and returns
them as an idss object m. It handles an arbitrary number of input and
outputs, including the time-series case (no input). The state-space
model is in the innovations form

m: The resulting model as an idss object.

If data is continuous-time (frequency-domain) data, a corresponding
continuous-time state-space model is estimated.

data: An iddata object containing the output-input data. Both
time-domain and frequency-domain signals are supported. data can
also be a frd or idfrd frequency-response data object.

order: The desired order of the state-space model. If order is entered
as a row vector (as in order = [1:10]), preliminary calculations for all
the indicated orders are carried out. A plot is then given that shows the
relative importance of the dimension of the state vector. More precisely,
the singular values of the Hankel matrices of the impulse response
for different orders are graphed. You are prompted to select the order,
based on this plot. The idea is to choose an order such that the singular
values for higher orders are comparatively small. If order = 'best',
a model of “best” (default choice) order is computed among the orders
1:10. This is the default choice of order.

Estimating the D Matrix

Whether the D matrix is estimated or not is governed by the property
nk, which is further described below. The default is that D is not
estimated. By setting the kth entry of nk to 0, the kth column of D
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(corresponding to the kth input) is estimated. To estimate a full D
matrix thus, let nk = zeros(1,nu) as in

m = n4sid(data,order,'nk',[0 .. 0])

This holds for both discrete- and continuous-time models.

Property Name/Property Value Pairs

The list of property name/property value pairs can contain any idss
and algorithm properties. See idss and Algorithm Properties.

idss properties that are of particular interest for n4sid are

• nk: For time-domain data, this gives delays from the inputs to the
outputs, a row vector with the same number of entries as the number
of input channels. Default is nk = [1 1... 1]. Note that delays
of 0 or 1 show up as zeros or estimated parameters in the D matrix.
Delays larger than 1 mean that a special structure of the A, B, and
C matrices is used to accommodate the delays. This also means
that the actual order of the state-space model will be larger than
order. For continuous-time models estimated from continuous-time
(frequency-domain) data, the elements of nk are restricted to the
values 1 and 0.

• CovarianceMatrix (can be abbreviated to 'co'): Setting
CovarianceMatrix to 'None' blocks all calculations of uncertainty
measures. These can take the major part of the computation
time. Note that, for a 'Free' parameterization, the individual
matrix elements cannot be associated with any variance. (These
parameters are not identifiable.) Instead, the resulting model m
stores a hidden state-space model in canonical form that contains
covariance information. This is used when the uncertainty of various
input-output properties is calculated. It can also be retrieved by
m.ss = 'can'. The actual covariance properties of n4sid estimates
are not known today. Instead the Cramer-Rao bound is computed and
stored as an indication of the uncertainty.

• DisturbanceModel: Setting DisturbanceModel to 'None' will
deliver a model with K = 0. This has no direct effect on the dynamics
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model other than that the default choice of N4Horizon will not
involve past outputs.

• InitialState: The initial state is always estimated for better
accuracy. However, it is returned with m only if InitialState =
'Estimate'.

Algorithm properties that are of special interest are

• Focus: Assumes the values 'Prediction' (default), 'Simulation',
'Stability', passbands, or any SISO linear filter (given as an LTI or
idmodel object, or as filter coefficients. See Algorithm Properties.)
Setting 'Focus' to 'Simulation' chooses weights that should give a
better simulation performance for the model. In particular, a stable
model is guaranteed. Selecting a linear filter focuses the fit to the
frequency ranges that are emphasized by this filter.

• N4Weight: This property determines some weighting matrices used
in the singular-value decomposition that is a central step in the
algorithm. Two choices are offered: 'MOESP', corresponding to the
MOESP algorithm by Verhaegen, and 'CVA', which is the canonical
variable algorithm by Larimore. The default value is 'N4Weight' =
'Auto', which gives an automatic choice between the two options.
m.EstimationInfo.N4Weight tells you what the actual choice turned
out to be.

• N4Horizon: Determines the prediction horizons forward and
backward used by the algorithm. This is a row vector with three
elements: N4Horizon = [r sy su], where r is the maximum
forward prediction horizon. That is, the algorithm uses up to r
step-ahead predictors. sy is the number of past outputs, and su is
the number of past inputs that are used for the predictions. See
pages 209 and 210 in Ljung (1999) for the exact meaning of this.
These numbers can have a substantial influence on the quality of
the resulting model, and there are no simple rules for choosing
them. Making 'N4Horizon' a k-by-3 matrix means that each row of
'N4Horizon' is tried, and the value that gives the best (prediction)
fit to data is selected. (This option cannot be combined with selection
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of model order.) If the property 'Trace' is 'On', information about
the results is given in the MATLAB Command Window.

If you specify only one column in 'N4Horizon', the interpretation
is r=sy=su. The default choice is 'N4Horizon' = 'Auto', which
uses an Akaike Information Criterion (AIC) for the selection of sy
and su. If 'DisturbanceModel' = 'None', sy is set to 0. Typing
m.EstimationInfor.N4Horizon will tell you what the final choices
of horizons were.

Algorithm The variants of the implemented algorithm are described in Section
10.6 in Ljung (1999).

Examples Build a fifth-order model from data with three inputs and two outputs.
Try several choices of auxiliary orders. Look at the frequency response
of the model.

z = iddata([y1 y2],[ u1 u2 u3]);
m = n4sid(z,5,'n4h',[7:15]','trace','on');
bode(m,'sd',3)

Estimate a continuous-time model, in a canonical form
parameterization, focusing on the simulation behavior. Determine the
order yourself after seeing the plot of singular values.

m = n4sid(m,[1:10],'foc','sim','ssp','can','ts',0)
bode(m)

References vanOverschee, P., and B. DeMoor, Subspace Identification of Linear
Systems: Theory, Implementation, Applications, Kluwer Academic
Publishers, 1996.

Verhaegen, M., “Identification of the deterministic part of MIMO state
space models,” Automatica, Vol. 30, pp. 61-74, 1994.

Larimore, W.E., “Canonical variate analysis in identification, filtering
and adaptive control,” In Proc. 29th IEEE Conference on Decision and
Control, pp. 596-604, Honolulu, 1990.
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See Also Algorithm Properties

idss

pem
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Purpose Estimate parameters of output-error model returning idpoly object

Syntax m = oe(data,orders)
m = oe(data,'nb',nb,'nf',nf,'nk',nk)
m = oe(data,orders,'Property1',Value1,'Property2',Value2,...)

Description oe returns m as an idpoly object with the resulting parameter
estimates, together with estimated covariances. The parameters of
the output-error model structure

are estimated using a prediction error method.

data is an iddata object containing the output-input data. Both time-
and frequency-domain data are supported. Moreover, data can be an
frd or idfrd frequency-response data object.

The structure information can either be given explicitly as

(...,'nb',nb,'nf',nf,'nk',nk,...)

or in the argument orders, given as

orders = [nb nf nk]

The parameters nb and nf are the orders of the output-error model
and nk is the delay. Specifically,

Alternatively, you can specify the vector as

orders = mi
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where mi is an initial guess at the output-error model given in idpoly
format. See “Definition of Polynomial Models” on page 5-43.

For multiinput systems, nb, nf, and nk are row vectors with as many
entries as there are input channels. Entry number i then describes the
orders and delays associated with the ith input.

Continuous-Time Models

If data is continuous-time (frequency-domain) data, oe estimates a
continuous-time model with transfer function

The orders of the numerator and denominator are thus determined by
nb and nf just as in the discrete-time case. However, the delay nk has
no meaning and should be omitted. For multiinput systems, nb and nf
are row vectors with obvious interpretation.

Properties

The structure and the estimation algorithm are affected by any
property name/property value pairs that are set in the input argument
list. Useful properties are 'Focus', 'InitialState', 'InputDelay',
'SearchDirection', 'MaxIter', 'Tolerance', 'LimitError',
'FixedParameter', and 'Trace'.

See Algorithm Properties, idpoly, and idmodel for details of these
properties and their possible values.

oe does not support multioutput models. Use a state-space model for
this case (see n4sid and pem).

Algorithm oe uses essentially the same algorithm as armax, with modifications to
the computation of prediction errors and gradients.
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Examples Suppose fast sampled data (Ts = 0.001) is available from a plant with
a bandwidth of about 500 rad/s. The data is treated as continuous-time
frequency-domain data, and a model of the type

is estimated.

z = iddata(y,u,0.001);
zf = fft(z);
zf.ts = 0;
m = oe(zf,[1 3],'foc',[0 500])

See Also Algorithm Properties

EstimationInfo

idpoly

pem
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Purpose Compute prediction errors associated with model and data set

Syntax e = pe(m,data)
[e,x0] = pe(m,data,init)

Description data is the output-input data set, given as an iddata object, and m is any
idmodel or idnlmodel object. Both time-domain and frequency-domain
data are supported, and data can also be an idfrd object.

e is returned as an iddata object, so that e.OutputData contains the
prediction errors that result when model m is applied to the data.

The argument init determines how to deal with the initial conditions:

• init = 'e(stimate)' means that the initial state is chosen so
that the norm of prediction error is minimized. This initial state is
returned as x0.

• init = `d(elayexpand)': Same as 'estimate', but for a model
with nonzero InputDelay, the delays are first converted to explicit
model delays (using inpd2nk) so that they are contained in x0.

• init = 'z(ero)' sets the initial state to zero.

• init = 'm(odel)' uses the model’s internally stored initial state.

• init = x0i, where x0i is a column vector of appropriate dimension,
uses that value as initial state. For multiexperiment data, x0i may
be a matrix whose columns give different initial states for each
experiment. For a continuous-time model m, x0 is the initial state for
this model. Any modifications of the initial state that sampling might
require are automatically handled. If m has a non-zero InputDelay,
and you need to access the values of the inputs during this delay, you
must first apply inpd2nk(m). If m is continuous in time, it must first
be sampled before inpd2nk can be applied.
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If init is not specified, the model property m.InitialState is used, so
that 'Estimate', 'Backcast', and 'Auto' set init = 'Estimate',
while m.InitialState = 'Zero' sets init = 'zero', and 'Fixed'
and 'Model' set init = 'model'.

The output argument x0 is the value of the initial state used. If data
contains several experiments, x0 is a matrix containing the initial
states from each experiment.

See Also compare

predict

resid

sim

simsd
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Purpose Estimate model parameters using iterative prediction-error
minimization method

Syntax m = pem(data)
m = pem(data,mi)
m = pem(data,mi,'Property1',Value1,...,'PropertyN',ValueN)
m = pem(data,orders)
m = pem(data,'P1D')
m = pem(data,'nx',ssorder)
m = pem(data,'na',na,'nb',nb,'nc',nc,'nd',nd,'nf',nf,'nk',nk)
m = pem(data,orders,'Property1',Value1,...,'PropertyN',ValueN)

Description pem is the basic estimation command in the toolbox and covers a variety
of situations.

data is always an iddata object that contains the input/output data.
Both time-domain and frequency-domain signals are supported. data
can also be an frd or idfrd frequency-response data object. Estimation
of noise models (K in state-space models and A, C, and D in polynomial
models) is not supported for frequency-domain data.

With Initial Model

mi is any idmodel or idnlmodel object. It could be a result of another
estimation routine, or constructed and modified by the constructors
(idarx, idpoly, idss, idgrey, idproc) and set. The properties of mi
can also be changed by any property name/property value pairs in pem
as indicated in the syntax.

m is then returned as the best fitting model in the model structure
defined by mi. The iterative search is initialized at the parameters of
the initial/nominal model mi. m will be of the same class as mi.

Black-Box State-Space Models

With m = pem(data,n), where n is a positive integer, or m =
pem(data,'nx',n), a state-space model of order n is estimated.
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If data is continuous-time (frequency-domain) data, a corresponding
continuous-time state space model is estimated.

The default is that it is estimated in a 'Free' parameterization that
can be further modified by the properties 'nk', 'DisturbanceModel',
and 'InitialState' (see the corresponding reference pages for idss
and n4sid). The model is initialized by n4sid and then further adjusted
by optimizing the prediction error fit.

You can choose among several different orders by

m = pem(data,'nx',[n1,n2,...nN])

and you are then prompted for the “best” order. By

m = pem(data,'best')

an automatic choice of order among 1:10 is made.

m = pem(data)

is short for m = pem(data,'best'). To work with other delays, use, for
example, m = pem(data,'best','nk',[0,...0]).

In this case m is returned as an idss model.

Estimating the D, K, and X0 Matrices

Whether the D matrix is estimated or not is governed by the property
nk, which is further described below. The default is that D is not
estimated. By setting the kth entry of nk to 0, the kth column of D
(corresponding to the kth input) is estimated. To estimate a full D
matrix, let nk = zeros(1,nu), as in

m = pem(data,order,'nk',[0 .. 0])

This holds for both discrete- and continuous-time models.
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For frequency-domain data, K is always fixed to 0. For time-domain
data, K is estimated by default. To fix K to 0 in this case, use

m = pem(data,order,'DisturbanceModel','none')

Similarily, X0 is estimated if 'InitialState' is set to 'Estimate', and
fixed to 0 if 'InitialState' is set to 'Zero'.

Black-Box Multiple-Input-Single-Output Models

The function pem also handles the general multiple-input-single-output
structure

The orders of this general model are given either as

orders = [na nb nc nd nf nk]

or with (...'na',na,'nb',nb,...) as shown in the syntax. Here na,
nb, nc, nd, and nf are the orders of the model, and nk is the delay(s). For
multiinput systems, nb, nf, and nk are row vectors giving the orders and
delays of each input. (See “Definition of Polynomial Models” on page
5-43 for exact definitions of the orders.) When the orders are specified
with separate entries, those not given are taken as zero.

For frequency-domain data, only estimation of B and F is supported. It
is simpler to use oe in that case.

In this case m is returned as an idpoly object.

Continuous-Time Process Models

Entering for the initial model an acronym for a process model, as in

m = pem(data,'P2UI')

will estimate a continuous-time process model of the indicated type. See
the reference page for idproc for details of possible model types and
associated property name/property value pairs.
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In this case m is returned as an idproc model.

Properties In all cases the algorithm is affected by the properties (see Algorithm
Properties for details):

• Focus, with possible values 'Prediction' (default), 'Simulation',
or a passband range.

• MaxIter and Tolerance govern the stopping criteria for the iterative
search.

• LimitError deals with how the criterion can be made less sensitive
to outliers and bad data.

• MaxSize determines the largest matrix ever formed by the algorithm.
The algorithm goes into for loops to avoid larger matrices, which can
be more efficient than using virtual memory.

• Trace, with possible values 'Off', 'On', and 'Full', governs the
information sent to the MATLAB Command Window.

For black-box state-space models, 'N4Weight' and 'N4Horizon' will
also affect the result, since these models are initialized with an n4sid
estimate. See the reference page for n4sid.

Typical idmodel properties are (see idmodel properties for more details)

• Ts is the sampling interval. Set 'Ts'= 0 to obtain a continuous-time
state-space model. For discrete-time models, 'Ts' is automatically
set to the sampling interval of the data. Note that, in the black-box
case, it is usually better to first estimate a discrete-time model, and
then convert that to continuous time using d2c.

• nk is the time delays from the inputs (not applicable to structured
state-space models). Time delays specified by 'nk' will be included
in the model.

• DisturbanceModel determines the parameterization of K for free
and canonical state-space parameterizations, as well as for idgrey
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models. It also determines whether a noise model should be included
for idproc models.

• InitialState: The initial state can have a substantial influence on
the estimation result for systems with slow responses. It is most
pronounced for output-error models (K = 0 for state-space and na
= nc = nd =0 for input/output models). The default value 'Auto'”
estimates the influence of the initial state and sets the value to
'Estimate', 'Backcast', or 'Zero' based on this effect. Possible
values of 'InitialState' are 'Auto', 'Estimate', 'Backcast',
'Zero', and 'Fixed'.

Examples Here is an example of a system with three inputs and two outputs. A
canonical form state-space model of order 5 is sought.

z = iddata([y1 y2],[ u1 u2 u3]);
m = pem(z,5,'ss','can')

Building an ARMAX model for the response to output 2,

ma = pem(z(:,2,:),'na',2,'nb',[2 3 1],'nc',2,'nk',[1 2 0])

Comparing the models (compare automatically matches the channels
using the channel names),

compare(z,m,ma)

Algorithm pem uses essentially the same algorithm as armax, with modifications to
the computation of prediction errors and gradients.

See Also Algorithm Properties

EstimationInfo

armax

bj
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Purpose Level of excitation of input signals

Syntax Ped = pexcit(Data)
[Ped.Maxnr] = pexcit(Data,Maxnr,Threshold)

Description Data is an iddata object with time- or frequency-domain signals.

Ped is the degree or order of excitation of the inputs in Data. A row
vector of integers with as many components as there are inputs in Data.
The intuitive interpretation of the degree of excitation in an input
is the order of a model that the input is capable of estimating in an
unambiguous way.

Maxnr is the maximum order tested. Default is min(N/3,50), where N is
the number of input data.

Threshold is the threshold level used to measure which singular values
are significant. Default is 1e-9.

References Section 13.2 in Ljung (1999).

See Also advice

iddata
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Purpose Plot iddata or model objects

Syntax plot(data)
plot(d1,...,dN)
plot(d1,PlotStyle1,...,dN,PlotStyleN)
plot(model)

Description data is the output-input data to be graphed, given as an iddata object.
A split plot is obtained with the outputs on top and the inputs at the
bottom.

One plot for each I/O channel combination is produced. Pressing the
Enter key advances the plot. Typing Ctrl+C aborts the plotting in
an orderly fashion.

To plot a specific interval, use plot(data(200:300)). To plot specific
input/output channels, use plot(data(:,ky,ku)), consistent with the
subreferencing of iddata objects.

If data.intersample = 'zoh', the input is piecewise constant between
sampling points, and it is then graphed accordingly.

To plot severaliddata sets d1,...,dN, use plot(d1,...,dN). I/O
channels with the same experiment name, input name, and output
name are always plotted in the same plot.

With PlotStyle, the color, line style, and marker of each data set can
be specified

plot(d1,'y:*',d2,'b')

just as in the regular plot command.

model is an idmodel, idnlarx, or idnlhw object.

See Also iddata
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Purpose Convert model to input-output polynomials

Syntax [A,B,C,D,F] = polydata(m)
[A,B,C,D,F,dA,dB,dC,dD,dF] = polydata(m)

Description This is essentially the inverse of the idpoly constructor. It returns the
polynomials of the general model

as contained in the model m.

dA, dB, etc. are the standard deviations of A, B, etc.

m can be any single-output idmodel, that is, not just idpoly. For
multioutput models you can use [A,B,C,D,F] = polydata(m(ky,:))
to obtain the polynomials for the kyth output.

See Also idmodel

idpoly

tfdata
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Purpose Generate custom regressors by computing powers and products of
standard regressors

Syntax polyreg(model,'MaxPower',n)
polyreg(model,'MaxPower',n,'CrossTerm','on')
polyreg(model,'MaxPower',n,'CrossTerm','off')

Arguments model
Name of the idnlarx model object.

MaxPower—n
Property-value pair specifies the maximum power of the
multivariable polynomial in terms of standard regressors of the
model.

Default: 2.

CrossTerms—'on' or 'off'
Property-value pair specifies whether to include or exclude
cross-terms of the polynomial, or products of standard regressors.

Default: 'off'.

Description polyreg is a method of the idnlarx model object.

polyreg(model,'MaxPower',n) adds one or more custom regressors to
nonlinear ARX model model. Custom regressors are powers of custom
regressors up to the maximum power n, but excluding terms of power 1.

polyreg(model,'MaxPower',n,'CrossTerm','on') one or more
custom regressors to nonlinear ARX model model and includes
cross-terms of the polynomial (products of standards regressors).

polyreg(model,'MaxPower',n,'CrossTerm','off') one or more
custom regressors to nonlinear ARX model model and excludes
cross-terms of the polynomial (products of standards regressors).

Examples % Construct a nonlinear ARX model that is
% linear in the regressors.
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M=idnlarx([2 2 1],'linear')
% Define custom regressors with default settings,
% which include second-order polynomial of standard
% regressors and no cross-terms.
P=polyreg(M)
% Estiomate model using custom regressors
% in the nonlinear block.
M=pem(Data,M,'customreg',P)

See Also customreg

getreg

idnlarx

polyreg
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Purpose Predict output k steps ahead

Syntax yp = predict(m,data)
[yp,x0p,mpred] = predict(m,data,k,'InitialState',init)

Description data is the output-input data as an iddata object, and m is any idmodel
or idnlmodel object. predict is meaningful only for time-domain data.

The argument k indicates that the k step-ahead prediction of y according
to the model m is computed. In the calculation of yp(t), the model can
use outputs up to time

and inputs up to the current time t. The default value of k is 1.

The output yp is an iddata object containing the predicted values as
OutputData.

x0p is the used (estimated) initial state vector. For multiexperiment
data, x0p is a matrix, whose columns contain the initial states for each
experiment.

The output argument mpred contains the k step-ahead predictor. This
is given as a cell array, whose kth entry is an idpoly model for the
predictor of output number k. Note that these predictor models have as
input both input and output signals in the data set. The channel names
indicate how the predictor model and the data fit together.

init determines how to deal with the initial state:

• init ='e(stimate)’: The initial state is set to a value that minimizes
the norm of the prediction error associated with the model and the
data.

• init = 'd(elayexpand)': Same as 'estimate', but for a model
with nonzero InputDelay, the delays are first converted to explicit
model delays (using inpd2nk) so that they are contained in x0p.

• init = 'z(ero)' sets the initial state to zero.
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• init = 'm(odel)' uses the model’s internally stored initial state.

• init = x0, where x0 is a column vector of appropriate dimension,
uses that value as initial state. For multiexperiment data, x0 can
be a matrix whose columns give different initial states for each
experiment. For a continuous-time model m, x0 is the initial state for
this model. Any modifications of the initial state that sampling might
require are automatically handled. If m has a non-zero InputDelay,
and you need to access the values of the inputs during this delay, you
must first apply inpd2nk(m). When m is a continuous-time model, it
must first be sampled before inpd2nk can be applied.

If init is not specified, the model property m.InitialState is used, so
that 'Estimate', 'Backcast', and 'Auto' set init = 'Estimate',
while m.InitialState = 'Zero' sets init = 'zero', and 'Model'
and 'Fixed' set init = 'model'.

An important use of predict is to evaluate a model’s properties in
the mid-frequency range. Simulation with sim (which conceptually
corresponds to k = inf) can lead to levels that drift apart, since the
low-frequency behavior is emphasized. One step-ahead prediction is
not a powerful test of the model’s properties, since the high-frequency
behavior is stressed. The trivial predictor can give good
predictions in case the sampling of the data is fast.

Another important use of predict is to evaluate time-series models.
The natural way of studying a time-series model’s ability to reproduce
observations is to compare its k step-ahead predictions with actual data.

Note that for output-error models, there is no difference between the k
step-ahead predictions and the simulated output, since, by definition,
output-error models only use past inputs to predict future outputs.

Algorithm The model is evaluated in state-space form, and the state equations are
simulated k steps ahead with initial value , where

is the Kalman filter state estimate.

Examples Simulate a time series, estimate a model based on the first half of the
data, and evaluate the four step-ahead predictions on the second half.
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m0 = idpoly([1 -0.99],[],[1 -1 0.2]);
e = iddata([],randn(400,1));
y = sim(m0,e);
m = armax(y(1:200),[1 2]);
yp = predict(m,y,4);
plot(y(201:400),yp(201:400))

Note that the last two commands are also achieved by

compare(y,m,4,201:400);

See Also compare

pe

sim

simsd
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Purpose Display model information, including estimated uncertainty

Syntax present(m)

Description The present function displays the model m, together with the estimated
standard deviations of the parameters, loss function, and Akaike’s Final
Prediction Error (FPE) Criterion (which essentially equals the AIC). It
also displays information about how m was created.

m is any idmodel or idnlmodel object.

present thus gives more detailed information about the model than the
standard display function.
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Purpose Store piecewise-linear nonlinear estimator for Hammerstein-Wiener
models

Syntax t=pwlinear('NumberOfUnits',N)
t=pwlinear('BreakPoints',BP)
t=pwlinear(Property1,Value1,...PropertyN,ValueN)

Description pwlinear is an object that stores the piecewise-linear nonlinear
estimator for estimating Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:

t=pwlinear('NumberOfUnits',N) creates a piecewise-linear
nonlinearity estimator object with N breakpoints.

t=pwlinear('BreakPoints',BP) creates a piecewise-linear
nonlinearity estimator object with breakpoints at values BP.

t=pwlinear(Property1,Value1,...PropertyN,ValueN) creates a
piecewise-linear nonlinearity estimator object specified by properties in
“pwlinear Properties” on page 12-257.

Use evaluate(p,x) to compute the value of the function defined by
the pwlinear object p at x.

Remarks Use pwlinear to define a nonlinear function y F x= ( ) , where F is a
piecewise-linear (affine) function of x and there are n breakpoints
(x_k,y_k), k=1,...,n. y_k = F(x_k). F is linearly interpolated
between the breakpoints.

y and x are scalars.

F is also linear to the left and right of the extreme breakpoints. The
slope of these extension is a function of x_i and y_i breakpoints. The
breakpoints are ordered by ascending x-values, which is important
when you set a specific breakpoint to a different value.

There are minor deviations from the breakpoint values you set and
the values actually stored in the object because the Toolbox represent
breakpoints differently internally.
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pwlinear
Properties

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(p)
% Get value of NumberOfUnits property
p.NumberOfUnits

You can use dot notation to assign property values to the object. set is
not supported for MCOS objects.

For example, the following two commands are equivalent:

p.NumberOfUnits=5

Property Name Description

NumberOfUnits Integer specifies the number of breakpoints
Default=10.

For example:

pwlinear('NumberOfUnits',5)

BreakPoints 2-by-n matrix containing the breakpoint x and y value,
specified using the following format:

[x_1,x_2,...,x_n;y_1,y_2,...,y_n]

If set to a 1-by-n vector, the values are interpreted as x-values
and the corresponding y-values are set to zero.

Examples Use pwlinear to specify the piecewise nonlinearity estimator in
Hammerstein-Wiener models. For example:

m=nlhw(Data,Orders,pwlinear('Br',[-1:0.1:1]),[]);
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The piecewise nonlinearity is initialized at the specified breakpoints.
The breakpoint values are adjusted to the estimation data by nlhw.

See Also nlhw
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Purpose Plot zeros and poles with confidence interval

Syntax pzmap(m)
pzmap(m,'sd',sd)
pzmap(m1,m2,m3,...)
pzmap(m1,'PlotStyle1',m2,'PlotStyle2',...,'sd',sd)
pzmap(m1,m2,m3,..,'sd',sd,'mode',mode,'axis',axis)

Description m is any idmodel object: idarx, idgrey, idss, idproc, or idpoly.

The zeros and poles of m are graphed, with o denoting zeros and x
denoting poles. Poles and zeros at infinity are ignored. For discrete-time
models, zeros and poles at the origin are also ignored.

The Property/Value pairs 'sd'/sd, 'mode'/mode and `axis'/axis can
appear in any order. They are explained below.

If sd has a value larger than zero, confidence regions around the poles
and zeros are also graphed. The regions corresponding to sd standard
deviations are marked. The default value is sd = 0. Note that the
confidence regions might sometimes stretch outside the plot, but they
are always symmetric around the indicated zero or pole.

If the poles and zeros are associated with a discrete-time model, a
unit circle is also drawn. For continuous-time models, the real and
imaginary axes are drawn.

When mi contains information about several different input/output
channels, you have the following options:

mode = 'sub' splits the screen into several plots, one for each
input/output channel. These are based on the InputName and
OutputName properties associated with the different models.

mode = 'same' gives all plots in the same diagram. Pressing the Enter
key advances the plots.

mode = 'sep' erases the previous plot before the next channel pair is
treated.

The default value is mode = 'sub'.
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axis = [x1 x2 y1 y2] fixes the axis scaling accordingly. axis = s
is the same as

axis = [-s s -s s]

You can select the colors associated with the different models by using
the argument PlotStyle. Use PlotStyle = 'b', 'g', etc. Markers
and line styles are not used.

The noise input channels in m are treated as follows: Consider a model m
with both measured input channels u (nu channels) and noise channels
e (ny channels) with covariance matrix

where L is a lower triangular matrix. Note that m.NoiseVariance =
. The model can also be described with a unit variance, normalized

noise source v.

Then,

• pzmap(m) plots the zeros and poles of the transfer function G.

• pzmap(m('n')) plots the zeros and poles of the transfer function H
(ny inputs and ny outputs). The input channels have names e@yname,
where yname is the name of the corresponding output.

• If m is a time series, that is nu = 0, pzmap(m) plots the zeros and
poles of the transfer function H.

• pzmap(noisecnv(m)) plots the zeros and poles of the transfer
function [G H] (nu+ny inputs and ny outputs). The noise input
channels have names e@yname, where yname is the name of the
corresponding output.
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• pzmap(noisecnv(m,'norm') plots the zeros and poles of the transfer
function [G HL] (nu+ny inputs and ny outputs). The noise input
channels have names v@yname, where yname is the name of the
corresponding output.

Examples mbj = bj(data,[2 2 1 1 1]);
mar = armax(data,[2 2 2 1]);
pzmap(mbj,mar,'sd',3)

shows all zeros and poles of two models along with the confidence
regions corresponding to three standard deviations.

See Also idmodel

zpkdata
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Purpose Estimate recursively parameters of ARMAX or ARMA models

Syntax thm = rarmax(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = rarmax(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the ARMAX model structure

are estimated using a recursive prediction error method.

The input-output data is contained in z, which is either an iddata object
or a matrix z = [y u] where y and u are column vectors. nn is given as

nn = [na nb nc nk]

where na, nb, and nc are the orders of the ARMAX model, and nk is the
delay. Specifically,

See“Definition of Polynomial Models” on page 5-43 for more information.

If z represents a time series y and nn = [na nc], rarmax estimates the
parameters of an ARMA model for y.

Only single-input, single-output models are handled by rarmax. Use
rpem for the multiinput case.

The estimated parameters are returned in the matrix thm. The kth row
of thm contains the parameters associated with time k; that is, they are
based on the data in the rows up to and including row k in z. Each row
of thm contains the estimated parameters in the following order:
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thm(k,:) = [a1,a2,...,ana,b1,...,bnb,c1,...,cnc]

yhat is the predicted value of the output, according to the current
model; that is, row k of yhat contains the predicted value of y(k) based
on all past data.

The actual algorithm is selected with the two arguments adm and adg.
These are described under rarx.

The input argument th0 contains the initial value of the parameters,
a row vector consistent with the rows of thm. The default value of th0
is all zeros.

The arguments P0 and P are the initial and final values, respectively, of
the scaled covariance matrix of the parameters. See rarx. The default
value of P0 is 104 times the unit matrix. The arguments phi0, psi0,
phi, and psi contain initial and final values of the data vector and the
gradient vector, respectively. The sizes of these depend on the chosen
model orders. The normal choice of phi0 and psi0 is to use the outputs
from a previous call to rarmax with the same model orders. (This call
could be a dummy call with default input arguments.) The default
values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you
want nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithm The general recursive prediction error algorithm (11.44), (11.47)
through (11.49) of Ljung (1999) is implemented. See Chapter 8,
“Recursive Parameter Estimation” for more information.

Examples Compute and plot, as functions of time, the four parameters in a
second-order ARMA model of a time series given in the vector y. The
forgetting factor algorithm with a forgetting factor of 0.98 is applied.

thm = rarmax(y,[2 2],'ff',0.98);
plot(thm)
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Purpose Estimate recursively parameters of ARX or AR models

Syntax thm = rarx(z,nn,adm,adg)
[thm,yhat,P,phi] = rarx(z,nn,adm,adg,th0,P0,phi0)

Description The parameters of the ARX model structure

are estimated using different variants of the recursive least squares
method.

The input-output data is contained in z, which is either an iddata object
or a matrix z = [y u] where y and u are column vectors. nn is given as

nn = [na nb nk]

where na and nb are the orders of the ARX model, and nk is the delay.
Specifically,

If z is a time series y and nn = na, rarx estimates the parameters of
an AR model for y.

Models with several inputs

are handled by allowing u to contain each input as a column vector,

u = [u1 ... unu]

and by allowing nb and nk to be row vectors defining the orders and
delays associated with each input.

Only single-output models are handled by rarx.
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The estimated parameters are returned in the matrix thm. The kth row
of thm contains the parameters associated with time k; that is, they are
based on the data in the rows up to and including row k in z. Each row
of thm contains the estimated parameters in the following order.

thm(k,:) = [a1,a2,...,ana,b1,...,bnb]

In the case of a multiinput model, all the b parameters associated with
input number 1 are given first, and then all the b parameters associated
with input number 2, and so on.

yhat is the predicted value of the output, according to the current
model; that is, row k of yhat contains the predicted value of y(k) based
on all past data.

The actual algorithm is selected with the two arguments adg and adm.
These are described in Chapter 8, “Recursive Parameter Estimation”.
The options are as follows:

• With adm = 'ff' and adg = lam the forgetting factor algorithm is
obtained with forgetting factor = lam. This is what is often referred
to as recursive least squares (RLS). In this case the matrix P has
the following interpretation: /2 * P is approximately equal to
the covariance matrix of the estimated parameters. Here is the
variance of the innovations (the true prediction errors e(t).

• With adm ='ug' and adg = gam, the unnormalized gradient
algorithm is obtained with gain gamma = gam. This algorithm is
commonly known as normalized least mean squares (LMS).

• Similarly, adm ='ng' and adg = gam give the normalized gradient or
normalized least mean squares (NLMS) algorithm. In these cases, P
is not defined or applicable.

• With adm ='kf' and adg = R1, the Kalman filter based algorithm is
obtained with R2=1 and R1 = R1. If the variance of the innovations
e(t) is not unity but ; then * P is the covariance matrix of the
parameter estimates, while = R1 / is the covariance matrix of
the parameter changes.
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• The input argument th0 contains the initial value of the parameters,
a row vector consistent with the rows of thm. The default value of
th0 is all zeros.

• The arguments P0 and P are the initial and final values, respectively,
of the scaled covariance matrix of the parameters. The default value
of P0 is 104 times the identity matrix.

• The arguments phi0 and phi contain initial and final values,
respectively, of the data vector.

Then, if

z = [y(1),u(1); ... ;y(N),u(N)]

you have phi0= and phi= . The default value of phi0 is all
zeros. For online use of rarx, use phi0, th0, and P0 as the previous
outputs phi, thm (last row), and P.

Note that the function requires that the delay nk be larger than 0. If
you want nk = 0, shift the input sequence appropriately and use nk
= 1. See nkshift.

Examples Adaptive noise canceling: The signal y contains a component that has
its origin in a known signal r. Remove this component by estimating,
recursively, the system that relates r to y using a sixth-order FIR model
together with the NLMS algorithm.

z = [y r];
[thm,noise] = rarx(z,[0 6 1],'ng',0.1);
% noise is the adaptive estimate of the noise
% component of y
plot(y-noise)

If the above application is a true online one, so that you want to plot
the best estimate of the signal y - noise at the same time as the data
y and u become available, proceed as follows.
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phi = zeros(6,1); P=1000*eye(6);
th = zeros(1,6); axis([0 100 -2 2]);
plot(0,0,'*'), hold on
% The loop:
while ~abort
[y,r,abort] = readAD(time);
[th,ns,P,phi] = rarx([y r],'ff',0.98,th,P,phi);
plot(time,y-ns,'*')
time = time +Dt
end

This example uses a forgetting factor algorithm with a forgetting factor
of 0.98. readAD represents an M-file that reads the value of an A/D
converter at the indicated time instant.

See Also nkshift

rarmax

rbj

roe

rpem

rplr
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Purpose Estimate recursively parameters of Box-Jenkins models

Syntax thm = rbj(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = ... rbj(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the Box-Jenkins model structure

are estimated using a recursive prediction error method.

The input-output data is contained in z, which is either an iddata object
or a matrix z = [y u] where y and u are column vectors. nn is given as

nn = [nb nc nd nf nk]

where nb, nc, nd, and nf are the orders of the Box-Jenkins model, and
nk is the delay. Specifically,

See“Definition of Polynomial Models” on page 5-43 for more information.

Only single-input, single-output models are handled by rbj. Use rpem
for the multiinput case.

The estimated parameters are returned in the matrix thm. The kth row
of thm contains the parameters associated with time k; that is, they are
based on the data in the rows up to and including row k in z. Each row
of thm contains the estimated parameters in the following order.
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thm(k,:) = [b1,...,bnb,c1,...,cnc,d1,...,dnd,f1,...,fnf]

yhat is the predicted value of the output, according to the current
model; that is, row k of yhat contains the predicted value of y(k) based
on all past data.

The actual algorithm is selected with the two arguments adm and adg.
These are described under rarx.

The input argument th0 contains the initial value of the parameters,
a row vector consistent with the rows of thm. The default value of th0
is all zeros.

The arguments P0 and P are the initial and final values, respectively, of
the scaled covariance matrix of the parameters. See rarx. The default
value of P0 is 104 times the unit matrix. The arguments phi0, psi0,
phi, and psi contain initial and final values of the data vector and the
gradient vector, respectively. The sizes of these depend on the chosen
model orders. The normal choice of phi0 and psi0 is to use the outputs
from a previous call to rbj with the same model orders. (This call could
be a dummy call with default input arguments.) The default values of
phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you
want nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithm The general recursive prediction error algorithm (11.44) of Ljung (1900)
is implemented. See also Chapter 8, “Recursive Parameter Estimation”.

See Also nkshift

rarmax

rarx

roe

rpem

rplr
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Purpose Determine whether iddata is based on real-valued signals

Syntax realdata(data)

Description realdata returns 1 if

• data contains only real-valued signals.

• data contains frequency-domain signals, obtained by Fourier
transformation of real-valued signals.

Otherwise realdata returns 0.

Notice the difference with isreal:

load iddata1
isreal(z1); % returns 1
zf = fft(z1);
isreal(zf) % returns 0
realdata(zf) % returns 1
zf = complex(zf) % adds negative frequencies to zf
realdata(zf) % still returns 1
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Purpose Resample data by interpolation and decimation

Syntax datar = resample(data,P,Q)
datar = resample(data,P,Q,,filter_order)

Description data: The data to be resampled, given as an iddata object

datar: The resampled data returned as an iddata object

P, Q: Integers that determine the resampling factor. The new sampling
interval will be Q/P times the original one, so resample(z,1,Q) means
decimation with a factor Q.

filter_order: Determines the order of the presampling filters used
before interpolation and decimation. Default is 10.

Algorithm If the Signal Processing Toolbox is available, the resampling is achieved
by calls to the resample function in that toolbox. The intersample
character of the input, as described by data.InterSample, is taken
into account.

Otherwise, use the function datar = idresamp(data,R), where R=Q/P.
Then the data is interpolated by a factor P and then decimated by a
factor Q. The interpolation and decimation are preceded by prefiltering,
and follow the same algorithms as in the routines interp and decimate
in the Signal Processing Toolbox.

Examples Resample by increasing the sampling rate by a factor of 1.5 and compare
the signals.

plot(u)
ur = resample(u,3,2);
plot(u,ur)
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Purpose Compute and test model residuals (prediction errors)

Syntax resid(m,data)
resid(m,data,Type)
resid(m,data,Type,M)
e = resid(m,data);

Description data contains the output-input data as an iddata object. Both
time-domain and frequency-domain data are supported. data can also
be an idfrd object.

m is any idmodel or idnlmodel object.

In all cases the residuals e associated with the data and the model are
computed. This is done as in the command pe with a default choice
of init.

When called without output arguments, resid produces a plot. The plot
can be of three kinds depending on the argument Type:

• Type = 'Corr' (only available for time-domain data): The
autocorrelation function of e and the cross correlation between e
and the input(s) u are computed and displayed. The 99% confidence
intervals for these values are also computed and shown as a yellow
region. The computation of the confidence region is done assuming
e to be white and independent of u. The functions are displayed up
to lag M, which is 25 by default.

• Type = 'ir': The impulse response (up to lag M, which is 25 by
default) from the input to the residuals is plotted with a 99%
confidence region around zero marked as a yellow area. Negative
lags up to M/4 are also included to investigate feedback effects. (The
result is the same as impulse(e,'sd',2.58,',M)).

• Type = 'fr': The frequency response from the input to the residuals
(based on a high-order FIR model) is shown as a Bode plot. A 99%
confidence region around zero is also marked as a yellow area.
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The default for time-domain data is Type = 'Corr'. For
frequency-domain data, the default is Type = 'fr'.

With an output argument, no plot is produced, and e is returned with
the residuals (prediction errors) associated with the model and the data.
It is an iddata object with the residuals as outputs and the input in
data as inputs. That means that e can be directly used to build model
error models, that is, models that describe the dynamics from the input
to the residuals (which should be negligible if m is a good description
of the system).

Examples Here are some typical model validation commands.

e = resid(m,data);
plot(e)
compare(data,m);

To compute a model error model, that is, a model to input to the
residuals to see if any essential unmodeled dynamics are left, do the
following:

e = resid(m,data);
me = arx(e,[10 10 0]);
bode(me,'sd',3,fill')

References Ljung (1999), Section 16.6.

See Also compare

predict

sim

simsd
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Purpose Estimate recursively output-error models (IIR-filters)

Syntax thm = roe(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = roe(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the output-error model structure

are estimated using a recursive prediction error method.

The input-output data are contained in z, which is either an iddata
object or a matrix z = [y u] where y and u are column vectors. nn
is given as

nn = [nb nf nk]

where nb and nf are the orders of the output-error model, and nk is the
delay. Specifically,

See“Definition of Polynomial Models” on page 5-43 for more information.

Only single-input, single-output models are handled by roe. Use rpem
for the multiinput case.

The estimated parameters are returned in the matrix thm. The kth row
of thm contains the parameters associated with time k; that is, they are
based on the data in the rows up to and including row k in z.

Each row of thm contains the estimated parameters in the following
order.

thm(k,:) = [b1,...,bnb,f1,...,fnf]
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yhat is the predicted value of the output, according to the current
model; that is, row k of yhat contains the predicted value of y(k) based
on all past data.

The actual algorithm is selected with the two arguments adg and adm.
These are described under rarx.

The input argument th0 contains the initial value of the parameters,
a row vector consistent with the rows of thm. The default value of th0
is all zeros.

The arguments P0 and P are the initial and final values, respectively, of
the scaled covariance matrix of the parameters. See rarx. The default
value of P0 is 104 times the unit matrix. The arguments phi0, psi0,
phi, and psi contain initial and final values of the data vector and the
gradient vector, respectively. The sizes of these depend on the chosen
model orders. The normal choice of phi0 and psi0 is to use the outputs
from a previous call to roe with the same model orders. (This call could
be a dummy call with default input arguments.) The default values of
phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you
want nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithm The general recursive prediction error algorithm (11.44) of Ljung (1999)
is implemented. See also Chapter 8, “Recursive Parameter Estimation”.

See Also nkshift

rarmax

rarx

rbj

rpem

rplr
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Purpose Estimate general input-output models using recursive prediction-error
minimization method

Syntax thm = rpem(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = rpem(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the general linear model structure

are estimated using a recursive prediction error method.

The input-output data is contained in z, which is either an iddata
object or a matrix z = [y u] where y and u are column vectors. (In the
multiinput case, u contains one column for each input.) nn is given as

nn = [na nb nc nd nf nk]

where na, nb, nc, nd, and nf are the orders of the model, and nk is the
delay. For multiinput systems, nb, nf, and nk are row vectors giving the
orders and delays of each input. See“Definition of Polynomial Models”
on page 5-43 for an exact definition of the orders.

The estimated parameters are returned in the matrix thm. The kth row
of thm contains the parameters associated with time k; that is, they are
based on the data in the rows up to and including row k in z. Each row
of thm contains the estimated parameters in the following order.

thm(k,:) = [a1,a2,...,ana,b1,...,bnb,...
c1,...,cnc,d1,...,dnd,f1,...,fnf]

For multiinput systems, the B part in the above expression is repeated
for each input before the C part begins, and the F part is also repeated
for each input. This is the same ordering as in m.par.

yhat is the predicted value of the output, according to the current
model; that is, row k of yhat contains the predicted value of y(k) based
on all past data.
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The actual algorithm is selected with the two arguments adg and adm.
These are described under rarx.

The input argument th0 contains the initial value of the parameters,
a row vector consistent with the rows of thm. The default value of th0
is all zeros.

The arguments P0 and P are the initial and final values, respectively,
of the scaled covariance matrix of the parameters. See rarx. The
default value of P0 is 104 times the unit matrix. The arguments phi0,
psi0, phi, and psi contain initial and final values of the data vector
and the gradient vector, respectively. The sizes of these depend on the
chosen model orders. The normal choice of phi0 and psi0 is to use the
outputs from a previous call to rpem with the same model orders. (This
call could be a dummy call with default input arguments.) The default
values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you
want nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithm The general recursive prediction error algorithm (11.44) of Ljung (1999)
is implemented. See also Chapter 8, “Recursive Parameter Estimation”.

For the special cases of ARX/AR models, and of single-input
ARMAX/ARMA, Box-Jenkins, and output-error models, it is more
efficient to use rarx, rarmax, rbj, and roe.

See Also nkshift

rarmax

rarx

rbj

roe

rplr
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Purpose Estimate general input-output models using recursive pseudolinear
regression method

Syntax thm = rplr(z,nn,adm,adg)
[thm,yhat,P,phi] = rplr(z,nn,adm,adg,th0,P0,phi0)

Description This is a direct alternative to rpem and has essentially the same syntax.
See rpem for an explanation of the input and output arguments.

rplr differs from rpem in that it uses another gradient approximation.
See Section 11.5 in Ljung (1999). Several of the special cases are
well-known algorithms.

When applied to ARMAX models, (nn = [na nb nc 0 0 nk]), rplr
gives the extended least squares (ELS) method. When applied to the
output-error structure (nn = [0 nb 0 0 nf nk]), the method is known
as HARF in the adm = 'ff' case and SHARF in the adm = 'ng' case.

rplr can also be applied to the time-series case in which an ARMA
model is estimated with

z = y
nn = [na nc]

You can thus use rplr as an alternative to rarmax for this case.

See Also nkshift

rarmax

rarx

rbj

roe

rpem
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Purpose Store saturation nonlinearity estimator for Hammerstein-Wiener
models

Syntax s=saturation(LinearInterval,L)

Description saturation is an object that stores the saturation nonlinearity
estimator for estimating Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:

s=saturation(LinearInterval,L) creates a saturation nonlinearity
estimator object, initialized with the linear interval L.

Use evaluate(s,x) to compute the value of the function defined by the
saturation object s at x.

Remarks Use saturation to define a nonlinear function y F x= ( ) , where F is a
function of x and has the following characteristics:

a x b F x x
a x F x a
b x

≤ < =
> =
≤

              
                   
  

( )
( )

                  F x b( ) =

y and x are scalars.

saturation
Properties

You can specify the property value as an argument in the constructor
to specify the object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List LinearInterval property value
get(s)
s.LinearInterval

You can use dot notation to assign property values to the object. set is
not supported for MCOS objects.

For example, the following two commands are equivalent:
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s.LinearInterval=[-1 1]

Property Name Description

LinearInterval 1-by-2 row vector that specifies the
initial interval of the saturation
Default=[NaN NaN].

For example:

saturation('LinearInterval',[-1.5 1.5])

Examples Use saturation to specify the saturation nonlinearity estimator in
Hammerstein-Wiener models. For example:

m=nlhw(Data,Orders,saturation([-1 1]),[]);

The saturation nonlinearity is initialized at the interval [-1 1]. The
interval values are adjusted to the estimation data by nlhw.

See Also nlhw
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Purpose Segment data and estimate models for each segment

Syntax segm = segment(z,nn)
[segm,V,thm,R2e] = segment(z,nn,R2,q,R1,M,th0,P0,ll,mu)

Description segment builds models of AR, ARX, or ARMAX/ARMA type,

assuming that the model parameters are piecewise constant over time.
It results in a model that has split the data record into segments over
which the model remains constant. The function models signals and
systems that might undergo abrupt changes.

The input-output data is contained in z, which is either an iddata
object or a matrix z = [y u] where y and u are column vectors. If the
system has several inputs, u has the corresponding number of columns.

The argument nn defines the model order. For the ARMAX model

nn = [na nb nc nk]

where na, nb, and nc are the orders of the corresponding polynomials.
See “Definition of Polynomial Models” on page 5-43. Moreover, nk is the
delay. If the model has several inputs, nb and nk are row vectors, giving
the orders and delays for each input.

For an ARX model (nc = 0) enter

nn = [na nb nk]

For an ARMA model of a time series

z = y
nn = [na nc]

and for an AR model

nn = na
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The output argument segm is a matrix, whose k row contains the
parameters corresponding to time k. This is analogous to the output
argument thm in rarx and rarmax. The output argument thm of
segment contains the corresponding model parameters that have not
yet been segmented. That is, they are not piecewise constant, and
therefore correspond to the outputs of the functions rarmax and rarx.
In fact, segment is an alternative to these two algorithms, and has a
better capability to deal with time variations that might be abrupt.

The output argument V contains the sum of the squared prediction
errors of the segmented model. It is a measure of how successful the
segmentation has been.

The input argument R2 is the assumed variance of the innovations e(t)
in the model. The default value of R2, R2 = [], is that it is estimated.
Then the output argument R2e is a vector whose kth element contains
the estimate of R2 at time k.

The argument q is the probability that the model undergoes at an
abrupt change at any given time. The default value is 0.01.

R1 is the assumed covariance matrix of the parameter jumps when they
occur. The default value is the identity matrix with dimension equal to
the number of estimated parameters.

M is the number of parallel models used in the algorithm (see below).
Its default value is 5.

th0 is the initial value of the parameters. Its default is zero. P0 is the
initial covariance matrix of the parameters. The default is 10 times
the identity matrix.

ll is the guaranteed life of each of the models. That is, any created
candidate model is not abolished until after at least ll time steps. The
default is ll = 1. Mu is a forgetting parameter that is used in the
scheme that estimates R2. The default is 0.97.

The most critical parameter for you to choose is R2. It is usually more
robust to have a reasonable guess of R2 than to estimate it. Typically,
you need to try different values of R2 and evaluate the results. (See the
example below.) sqrt(R2) corresponds to a change in the value y(t)

12-282



segment

that is normal, giving no indication that the system or the input might
have changed.

Algorithm The algorithm is based on M parallel models, each recursively estimated
by an algorithm of Kalman filter type. Each is updated independently,
and its posterior probability is computed. The time-varying estimate
thm is formed by weighting together the M different models with weights
equal to their posterior probability. At each time step the model (among
those that have lived at least ll samples) that has the lowest posterior
probability is abolished. A new model is started, assuming that the
system parameters have jumped, with probability q, a random jump
from the most likely among the models. The covariance matrix of the
parameter change is set to R1.

After all the data are examined, the surviving model with the highest
posterior probability is tracked back and the time instances where it
jumped are marked. This defines the different segments of the data. (If
no models had been abolished in the algorithm, this would have been the
maximum likelihood estimates of the jump instances.) The segmented
model segm is then formed by smoothing the parameter estimate,
assuming that the jump instances are correct. In other words, the last
estimate over a segment is chosen to represent the whole segment.

Examples Check how the algorithm segments a sinusoid into segments of constant
levels. Then use a very simple model y(t) = b1 * 1, where 1 is a fake
input and describes the piecewise constant level of the signal y(t)
(which is simulated as a sinusoid).

y = sin([1:50]/3)';
thm = segment([y,ones(size(y))],[0 1 1],0.1);
plot([thm,y])

By trying various values of R2 (0.1 in the above example), more levels
are created as R2 decreases.
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Purpose Select model order (structure)

Syntax nn = selstruc(v)
[nn,vmod] = selstruc(v,c)

Description selstruc is a function to help choose a model structure (order) from
the information contained in the matrix v obtained as the output from
arxstruc or ivstruc.

The default value of c is 'plot'. The plot shows the percentage of
the output variance that is not explained by the model as a function
of the number of parameters used. Each value shows the best fit for
that number of parameters. By clicking in the plot you can examine
which orders are of interest. When you click 'Select', the variable nn
is returned in the workspace as the optimal model structure for your
choice of number of parameters. Several choices can be made.

c = 'aic' gives no plots, but returns in nn the structure that minimizes
Akaike’s Information Criterion (AIC),

where V is the loss function, d is the total number of parameters in the
structure in question, and N is the number of data points used for the
estimation. See aic for more details.

c = 'mdl' returns in nn the structure that minimizes Rissanen’s
Minimum Description Length (MDL) criterion.

When c equals a numerical value, the structure that minimizes

is selected.
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The output argument vmod has the same format as v, but it contains the
logarithms of the accordingly modified criteria.

Examples V = arxstruc(data(1:200),data(201:400),...
struc(1:10,1:10,1:10))

nn = selstruc(V,0); %best fit to validation data
m = arx(data,nn)
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Purpose Set properties of data and model objects

Syntax set(m,'Property',Value)
set(m,'Property1',Value1,...'PropertyN',ValueN)
set(m,'Property')
set(m)

Description set is used to set or modify the properties of any of the objects in the
toolbox (iddata, idmodel, idgrey, idarx, idpoly, idss, idnlgrey,
idnlarx, idnlhw). See the corresponding reference pages for a complete
list of properties.

set(m,'Property',Value) assigns the value Value to the property
of the object m specified by the string 'Property'. This string can be
the full property name (for example, 'SSParameterization') or any
unambiguous case-insensitive abbreviation (for example, 'ss').

set(m,'Property1',Value1,...'PropertyN',ValueN) sets multiple
properties with a single statement. In certain cases this might be
necessary, since the model m must, for example, have state-space
matrices of consistent dimensions after each set statement.

set(m,'Property') displays admissible values for the property
specified by 'Property'.

set(m) displays all assignable values of m and their admissible values.

The same result is also obtained by subassignment.

m.Property = Value
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Purpose Set initial states of idnlgrey model object

Syntax setinit(model)
setinit(model,prop,values)

Arguments model
Name of the idnlgrey model object.

Property
Name of the InitialStates model property field, such as 'Name',
'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.

Values
Values of the specified property Property. Values are an Nx-by-1
cell array of values, where Nx is the number of states.

Description setinit(model) sets the initial-state values in the 'Value' field of the
InitialStates model property.

setinit(model,prop,values) sets the values of the prop field of the
InitialStates model property. prop can be 'Name', 'Unit', 'Value',
'Minimum', 'Maximum', and 'Fixed'.

See Also getinit

getpar

idnlgrey

setpar
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Purpose Set initial parameter values of idnlgrey model object

Syntax setpar(model)
setpar(model,prop)

Arguments model
Name of the idnlgrey model object.

Property
Name of the Parameters model property field, such as 'Name',
'Unit', 'Value', 'Minimum', or 'Maximum'.

Default: 'Value'.

Description setpar(model) sets the initial model parameter values in the 'Value'
field of the Parameters model property.

setpar(model,prop) sets the model parameter values in the prop
field of the Parameters model property. prop can be 'Name', 'Unit',
'Value', 'Minimum', and 'Maximum'.

See Also getinit

getpar

idnlgrey

setinit
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Purpose Set mnemonic parameter names for black-box model structures

Syntax model = setpname(model)

Description model is an idmodel object of idarx, idpoly, idproc, or idss type.
The returned model has the 'PName' property set to a cell array of
strings that correspond to the symbols used in this manual to describe
the parameters.

For single-input idpoly models, the parameters are called
'a1', 'a2', ...,'fn'.

For multiinput idpoly models, the b and f parameters have the
output/input channel number in parentheses, as in 'b1(1,2)',
'f3(1,2)', etc.

For idarx models, the parameter names are as in '-A(ky,ku)' for the
negative value of the ky-ku entry of the matrix in A(q) polynomial of the
multioutput ARX equation, and similarly for the B parameters.

For idss models, the parameters are named for the matrix entries they
represent, such as 'A(4,5)', 'K(2,3)', etc.

For idproc models, the parameter names are as described under
idproc.

This function is particularly useful when certain parameters are to be
fixed. See the property FixedParameter under Algorithm Properties.
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Purpose Set matrix structure for idss objects

Syntax setstruc(M,As,Bs,Cs,Ds.Ks,X0s)setstruc(M,Mods)

Description setstruc(M,As,Bs,Cs,Ds.Ks,X0s)

is the same as

set(M,'As',As,'Bs',Bs,'Cs',Cs,'Ds',Ds,'Ks',Ks,'X0s',X0s)

Use empty matrices for structure matrices that should not be changed.
You can omit trailing arguments.

In the alternative syntax, Mods is a structure with fieldnames As, Bs,
etc., with the corresponding values of the fields.

See Also idss
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Purpose Store sigmoid network nonlinearity estimator for nonlinear ARX and
Hammerstein-Wiener models

Syntax s=sigmoidnet('NumberOfUnits',N)
s=sigmoidnet(Property1,Value1,...PropertyN,ValueN)

Description sigmoidnet is an object that stores the sigmoid network nonlinear
estimator for estimating nonlinear ARX and Hammerstein-Wiener
models.

You can use the constructor to create the nonlinearity object, as follows:

s=sigmoidnet('NumberOfUnits',N) creates a sigmoid nonlinearity
estimator object with N terms in the sigmoid expansion.

s=sigmoidnet(Property1,Value1,...PropertyN,ValueN) creates
a sigmoid nonlinearity estimator object specified by properties in
“sigmoidnet Properties” on page 12-292.

Use evaluate(s,x) to compute the value of the function defined by the
sigmoidnet object s at x.

Remarks Use sigmoidnet to define a nonlinear function y F x= ( ) , where y is
scalar and x is an m-dimensional row vector. The sigmoid network
function is based on the following expansion:

F x x r PL a f x r Qb c( ) ( )= − + −( ) −( ) +
+

1 1 1 K

                          aa f x r Qb c dn n n−( ) −( ) +
where f is the sigmoid function, given by the following equation:

f z
e z

( ) =
+−

1

1

P and Q are m-by-p and m-by-q projection matrices. The projection
matrices P and Q are determined by principal component analysis of
estimation data. Usually, p=m. If the components of x in the estimation
data are linearly dependent, then p<m. The number of columns of Q,
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q, corresponds to the number of components of x used in the sigmoid
function.

When used in a nonlinear ARX model, q is equal to the size of the
NonlinearRegressors property of the idnlarx object. When used in a
Hammerstein-Wiener model, m=q=1 and Q is a scalar.

r is a 1-by-m vector and represents the mean value of the regressor
vector computed from estimation data.

d, ak, and ck are scalars.

L is p-by-1 vector.

bk are q-by-1 vectors.

sigmoidnet
Properties

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(s)
% Get value of NumberOfUnits property
s.NumberOfUnits

You can use dot notation to assign property values to the object. set is
not supported for MCOS objects.

For example, the following two commands are equivalent:

s.NumberOfUnits=5

The Parameters property is a structure. Typically, the values of this
structure are set by estimating a model with a sigmoidnet nonlinearity.
If you need to set the values of this structure, you can use the following
syntax:

X=struct('RegressorMean',r,
'NonLinearSubspace',P,
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'LinearSubspace',Q,
'LinearCoef',L,
'Dilation',b_k,
'Translation',c_k,
'OutputCoef',a_k,
'OutputOffset',d);

s.Parameters=X;

Property Name Description

NumberOfUnits Integer specifies the number of
nonlinearity units in the expansion.
Default=10.

For example:

sigmoidnet(H,'NumberOfUnits',5)
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Property Name Description

LinearTerm Can have the following values:

• 'on'—Estimates the vector L in the expansion.

• 'off'—Fixes the vector L to zero.

For example:

sigmoidnet(H,'LinearTerm','on')

Parameters A structure containing the parameters in the nonlinear
expansion, as follows:

• RegressorMean: 1-by-m vector containing the means of x
in estimation data, r.

• NonLinearSubspace: m-by-q matrix containing Q.

• LinearSubspace: m-by-p matrix containing P.

• LinearCoef: p-by-1 vector L.

• Dilation: q-by-n matrix containing the values b_k.

• Translation: 1-by-n vector containing the values c_k.

• OutputCoef: n-by-1 vector containing the values a_k.

• OutputOffset: scalar d.

Examples Use sigmoidnet to specify the nonlinear estimator in nonlinear ARX
and Hammerstein-Wiener models. For example:

m=nlarx(Data,Orders,sigmoidnet('num',5));

See Also nlarx

nlhw
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Purpose Simulate linear models with confidence interval

Syntax y = sim(m,u)
y = sim(m,u,'noise')
[y, ysd] = sim(m,u,'InitialState',init)

Description m is any idmodel or idnlmodel object.

u is an iddata object, containing inputs only. (Any outputs are ignored).
Both time-domain and frequency-domain signals are supported. The
number of input channels in u must either be equal to the number
of inputs of the model m or equal to the sum of the number of inputs
and noise sources (number of outputs). In the latter case the last
inputs in u are regarded as noise sources and a noise-corrupted
simulation is obtained. The noise is scaled according to the property
m.NoiseVariance in m. To obtain the right noise level according to the
model, the noise inputs should be white noise with zero mean and
unit covariance matrix. A simpler way of obtaining a noise-corrupted
simulation with Gaussian noise is to add the argument 'noise'. If no
noise sources are contained in u, a noise-free simulation is obtained.
sim applies both to time-domain and frequency-domain iddata objects,
but no standard deviations are obtained for frequency-domain signals.

sim returns y, containing the simulated output, as an iddata object.

init gives access to the initial states:

• init = 'm' (default) uses the internally stored initial state of model
m.

• init = 'z' uses zero initial state.

• init = x0, where x0 is a column vector of appropriate length, uses
this value as the initial state. For multi-experiment inputs, x0 has as
many columns as there are experiments to allow for different initial
conditions. For a continuous-time model m, x0 is the initial state for
this model. Any modifications of the initial state that sampling might
require are automatically handled. If m has a non-zero InputDelay,
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and you need to access the values of the inputs during this delay, you
must first apply inpd2nk(m). If m is a continuous-time model, it must
first be sampled before inpd2nk can be applied.

The second output argument ysd is the standard deviation of the
simulated output. This is not available for frequency-domain data.

u can also be given as a matrix with the number of columns being
either the number of inputs in m or the sum of the number of inputs and
outputs. Then y and ysd are returned as matrices. Continuous-time
models, however, require u to be given as iddata.

If m is a continuous-time model, it is first converted to discrete time with
the sampling interval given by ue, taking into account the intersample
behavior of the input (ue.InterSample).

Examples Simulate a given system m0 (for example, created by idpoly).

e = iddata([],randn(500,1));
u = iddata([],idinput(500,'prbs'));
y = sim(m0,[u e]);
% iddata object with output y and input u.
z = [y u];

The same result is obtained by

u = iddata([],idinput(500,'prbs'));
y = sim(m0,u,'noise');
z = [ y u];

or

u = idinput(500,'prbs');
y = sim(m0,u,'noise');
z = iddata(y,u);

Validate a model by comparing a measured output y with one simulated
using an estimated model m.
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yh = sim(m,u);
plot(y,yh)

See Also compare

idmdlsim

pe

predict

simsd
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Purpose Simulate models with uncertainty using Monte Carlo method

Syntax simsd(m,u)
simsd(m,u,N,'noise',Ky)
[y,ysd] = simsd(m,u)

Description u is an iddata object containing the inputs. m is a model given as
any idmodel object. N random models are created according to the
covariance information given in m. The responses of each of these
models to the input u are computed and graphed in the same diagram.
If the argument 'noise' is included, noise is added to the simulation
in accordance with the noise model of m and its own uncertainty. Ky
denotes the output numbers to be plotted. (The default is all).

The default value is N=10.

With output arguments

[y,ysd] = simsd(m,u)

No plots are produced, but y is returned as a cell array with the
simulated outputs, and ysd is the estimated standard deviation of y,
based on the N different simulations. If u is an iddata object, so are
the contents of the cells of y and ysd; otherwise, they are returned as
vectors/matrices. In the iddata case,

plot(y{:})

thus plots all the responses.

sim and simsd have similar syntaxes. Note that simsd computes
the standard deviation by Monte Carlo simulation, while sim uses
differential approximations (the Gauss approximation formula). They
might give different results.

Examples Plot the step response of the model m and evaluate how it varies in view
of the model’s uncertainty.

step1 = [zeros(5,1); ones(20,1)];
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simsd(m,step1)

See Also compare

idmdlsim

pe

predict

sim
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Purpose Dimensions of iddata, idmodel, and idfrd objects

Syntax d = size(m)
[ny,nu,Npar,Nx] = size(model)
[N, ny, nu, Nexp] = size(data)
ny = size(data,2)
ny = size(data,'ny')
size(model)
size(idfrd_object)

Description size describes the dimensions of iddata, idmodel, and idfrd objects.

iddata
For iddata objects, the sizes returned are, in this order,

• N = the length of the data record. For multiple-experiment data, N is
a row vector with as many entries as there are experiments.

• ny = the number of output channels.

• ny = the number of input channels.

• Ne = the number of experiments.

To access just one of these sizes, use size(data,k) for the k
size(data,'N'),size(data,'ny'), etc.

When called with one output argument, d = size(data) returns

• d = [N ny nu] if the number of experiments is 1.

• d = [sum(N) ny nu Ne] if the number of experiments is Ne > 1.

idmodel

For idmodel objects the sizes returned are, in this order,

• ny = the number of output channels.

• nu = the number of input channels.
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• Npar = the length of the ParameterVector (number of estimated
parameters).

• Nx = the number of states for idss and idgrey models.

In this case the individual dimensions are obtained by size(mod,2),
size(mod,'Npar'), etc.

When size is called with one output argument, d = size(mod), d is
given by

[ny nu Npar]

idfrd

For idfrd models, the sizes returned are, in this order,

• ny = the number of output channels.

• nu = the number of input channels.

• Nf = the number of frequencies.

• Ns = the number of spectrum channels.

In this case the individual dimensions are obtained by size(mod,2),
size(mod,'Nf'), etc.

When size is called with one output argument, d = size(fre), d is
given by

[ny nu Nf Ns]

When size is called with no output arguments, in any of these cases,
the information is displayed in the MATLAB Command Window.
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Purpose Estimate frequency response and spectrum using spectral analysis
returning idfrd object

Syntax g = spa(data)
g = spa(data,M,w,maxsize)
[g,phi,spe] = spa(data)

Description spa estimates the transfer function g and the noise spectrum of the
general linear model

where is the spectrum of .

data contains the output-input data as an iddata object. The data
can be complex valued. data can be both time domain and frequency
domain. data can also be an idfrd object.

g is returned as an idfrd object (see idfrd) with the estimate of
at the frequencies specified by row vector w. The default value

of w is

w = [1:128]/128*pi/Ts

Here Ts is the sampling interval of data.

g also includes information about the spectrum estimate of
at the same frequencies. Both outputs are returned with estimated
covariances, included in g. See idfrd.

M is the length of the lag window used in the calculations. The default
value is

M = min(30,length(data)/10)

Changing the value of M controls the frequency resolution of the
estimate. The resolution corresponding to M is approximately /M
rad/sampling interval. The value of M exchanges bias for variance in
the spectral estimate. As M is increased, the estimated functions show
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more detail, but are more corrupted by noise. The sharper peaks a true
frequency function has, the higher M it needs. See etfe as an alternative
for narrowband signals and systems. The function spafdr allows the
frequency resolution to depend on the frequency. See also “Spectral
Analysis Models” on page 5-31.

maxsize controls the memory-speed tradeoff (see Algorithm
Properties).

For time series, where data contains no input channels, g is returned
with the estimated output spectrum and its estimated standard
deviation.

When spa is called with two or three output arguments,

• g is returned as an idfrd model with just the estimated frequency
response from input to output and its uncertainty.

• phi is returned as an idfrd model, containing just the spectrum data
for the output spectrum and its uncertainty.

• spe is returned as an idfrd model containing spectrum data for all
output-input channels in data. That is, if z = [data.OutputData,
data.InputData], spe contains as spectrum data the matrix-valued
power spectrum of z.

Here win(m) is weight at lag m of an M-size Hamming window and W
is the frequency value i rad/s. Note that ' denotes complex-conjugate
transpose.

The normalization of the spectrum differs from the one used by spectrum
in the Signal Processing Toolbox. See“Spectrum Normalization and the
Sampling Interval” on page 5-40 for a more precise definition.
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Examples With default frequencies,

g = spa(z);
bode(g)

With logarithmically spaced frequencies,

w = logspace(-2,pi,128);
g= spa(z,[],w); % (empty matrix gives default)
bode(g,'sd',3)
bode(g('noise'),'sd',3) % noise spectrum with confidence
interval of 3 standard deviations.

Algorithm The covariance function estimates are computed using covf. These are
multiplied by a Hamming window of lag size M and then transformed
using a Fourier transform. The relevant ratios and differences are then
formed. For the default frequencies, this is done using a fast Fourier
transform, which is more efficient than for user-defined frequencies. For
multivariable systems, a straightforward for loop is used.

Note that M = is in Table 6.1 of Ljung (1999). The standard deviations
are computed as on pages 184 and 188 in Ljung (1999).

See Also bode

etfe

ffplot

freqresp

idfrd

nyquist

spafdr
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Purpose Estimate frequency response and spectrum using spectral analysis with
frequency-dependent resolution returning idfrd object

Syntax g = spafdr(data)
g = spafdr(data,Resol,w)

Description spafdr estimates the transfer function g and the noise spectrum of
the general linear model

where is the spectrum of .

data contains the output-input data as an iddata object. The data can
be complex valued, and either time or frequency domain. It can also be
an idfrd object containing frequency-response data.

g is returned as an idfrd object (see idfrd) with the estimate of
at the frequencies specified by row vector w. g also includes

information about the spectrum estimate of at the same
frequencies. Both results are returned with estimated covariances,
included in g. See idfrd. The normalization of the spectrum is the
same as described under spa.

Frequencies

The frequency variable w is either specified as a row vector of
frequencies, or as a cell array {wmin,wmax}. In the latter case the
covered frequencies will be 50 logarithmically spaced points from
wmin to wmax. You can change the number of points to NP by entering
{wmin,wmax,NP}.

Omitting w or entering it as an empty matrix gives the default value,
which is 100 logarithmically spaced frequencies between the smallest
and largest frequency in data. For time-domain data, this means from
1/N*Ts to pi*Ts, where Ts is the sampling interval of data and N is
the number of data.
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Resolution

The argument Resol defines the frequency resolution of the estimates.
The resolution (measured in rad/s) is the size of the smallest detail
in the frequency function and the spectrum that is resolved by the
estimate. The resolution is a tradeoff between obtaining estimates with
fine, reliable details, and suffering from spurious, random effects: The
finer the resolution, the higher the variance in the estimate. Resol
can be entered as a scalar (measured in rad/s), which defines the
resolution over the whole frequency interval. It can also be entered
as a row vector of the same length as w. Then Resol(k) is the local,
frequency-dependent resolution around frequency w(k).

The default value of Resol, obtained by omitting it or entering it as the
empty matrix, is Resol(k) = 2(w(k+1)-w(k)), adjusted upwards, so
that a reasonable estimate is guaranteed. In all cases, the resolution is
returned in the variable g.EstimationInfo.WindowSize.

Algorithm If the data is given in the time domain, it is first converted to
the frequency domain. Then averages of Y(w)Conj(U(w)) and
U(w)Conj(U(w)) are formed over the frequency ranges w, corresponding
to the desired resolution around the frequency in question. The ratio of
these averages is then formed for the frequency-function estimate, and
corresponding expressions define the noise spectrum estimate.

See Also bode

etfe

ffplot

freqresp

idfrd

nyquist

spa
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Purpose Convert idmodel objects of System Identification Toolbox to LTI models
of Control System Toolbox

Syntax sys = ss(mod)
sys = ss(mod,'m')

Description mod is any idmodel object: idgrey, idarx, idpoly, idproc, idss, or
idmodel.

sys is returned as an ss LTI model object. The noise input channels in
mod are treated as follows: consider a model mod with both measured
input channels u (nu channels) and noise channels e (ny channels) with
covariance matrix

Both measured input channels u and normalized noise input channels v
in mod are input channels in sys. The noise input channels belong to
the InputGroup 'Noise', while the others belong to the InputGroup
'Measured'. The names of the noise input channels are v@yname, where
yname is the name of the corresponding output channel. This means
that the LTI object realizes the transfer function [G HL].

To transform only the measured input channels in sys, use

sys = ss(mod('m')) or sys = ss(mod,'m')

This gives a representation of G only.

For a time series, (no measured input channels, nu = 0), the LTI
representations in ss contains the transfer functions from the
normalized noise sources v to the outputs, that is, HL. If the model
mod has both measured and noise inputs, sys = ss(mod('n')) gives a
representation of the additive noise.

In addition, the normal subreferencing can be used.

sys = ss(mod(1,[3 4]))
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If you want to describe [G H] or H (unnormalized noise), from e to
y, first use

mod = noisecnv(mod)

to convert the noise channels e to regular input channels. These
channels are assigned the names e@yname.

See Also frd

tf

zpk
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Purpose Convert model to state-space form

Syntax [A,B,C,D,K,X0] = ssdata(m)
[A,B,C,D,K,X0,dA,dB,dC,dD,dK,dX0] = ssdata(m)

Description m is the model given as any idmodel object. A, B, C, D, K, and X0 are the
matrices in the state-space description

where is or depending on whether m is a
continuous-time or discrete-time model.

dA, dB, dC, dD, dK, and dX0 are the standard deviations of the state-space
matrices.

If the underlying model itself is a state-space model, the matrices
correspond to the same basis. If the underlying model is an input-output
model, an observer canonical form representation is obtained.

For a time-series model (no measured input channels, u = []), B and D
are returned as the empty matrices.

Subreferencing models in the usual way (see idmodel properties) will
give the state-space representation of the chosen channels. Notice in
particular that

[A,B,C,D] = ssdata(m('m'))

gives the response from the measured inputs. This is a model without a
disturbance description. Moreover,

[A,B,C,D,K] = ssdata(m('n'))
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('n' as in “noise”) gives the disturbance description, that is, a
time-series description of the additive noise with no measured inputs,
so that B = [] and D = [].

To obtain state-space descriptions that treat all input channels, both u
and e, as measured inputs, first apply the conversion

m = noisecnv(m)

or

m = noisecnv(m,'norm')

where the latter case first normalizes e to v, where v has a unit
covariance matrix. See the reference page for noisecnv.

Algorithm The computation of the standard deviations in the input-output case
assumes that an A polynomial is not used together with an F or D
polynomial in the general polynomial equation (see “Definition of
Polynomial Models” on page 5-43. For the computation of standard
deviations in the case that the state-space parameters are complicated
functions of the parameters, the Gauss approximation formula is
used together with numerical derivatives. The step sizes for this
differentiation are determined by nuderst.

See Also idmodel

idss

nuderst
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Purpose Plot step response with confidence interval

Syntax step(m)
step(data)
step(m,'sd',sd,Time)
step(data,'sd',sd,'PW',na,Time)
step(m1,m2,...,dat1, ...,mN,Time,'sd',sd)
step(m1,'PlotStyle1',m2,'PlotStyle2',...,dat1,'PlotStylek',...,mN,
'PlotStyleN',Time,'sd',sd)
[y,t,ysd] = step(m)
mod = step(data)

Description step can be applied both to any idmodel or idnlmodel object and to
iddata sets.

For a discrete-time idmodel m, the step response y and, when required,
its estimated standard deviation ysd, are computed using sim. When
called with output arguments, y, ysd, and the time vector t are
returned. When step is called without output arguments, a plot of
the step response is shown. If sd is given a value larger than zero, a
confidence region around the response is drawn. It corresponds to
the confidence of sd standard deviations. If the input argument list
contains 'fill', this region is plotted as a filled area.

Setting the Time Interval

The start time T1 and the end time T2 can be specified by Time = [T1
T2]. If T1 is not given, it is set to -T2/4. The negative time lags (the
step is always assumed to occur at time 0) show possible feedback
effects in the data when the step is estimated directly from data. If
Time is not specified, a default value is used.

Estimating the Step Response from data

For an iddata set data, step(data) estimates a high-order, noncausal
FIR model after first having prefiltered the data so that the input
is “as white as possible.” The step response of this FIR model and,
when asked for, its confidence region, are then plotted. Note that it
might not be possible always to deliver the demanded time interval in
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this case, because of lack of excitation in the data. A warning is then
issued. When called with an output argument, step, in the iddata case,
returns this FIR model, stored as an idarx model. The order of the
prewhitening filter can be specified as na. The default value is na = 10.

Several Models/Data Sets

Any number and any mixture of models and data sets can be used as
input arguments. The responses are plotted with each input/output
channel (as defined by the models and data sets InputName and
OutputName) as a separate plot. Colors, line styles, and marks can be
defined by PlotStyle values, as in

step(m1,'b-*',m2,'y--',m3,'g')

Noise Channels

The noise input channels in m are treated as follows: Consider a model m
with both measured input channels u (nu channels) and noise channels
e (ny channels) with covariance matrix

where L is a lower triangular matrix. Note that m.NoiseVariance =
. The model can also be described with a unit variance, normalized

noise source v:

• step(m) plots the step response of the transfer function G.

• step(m('n')) plots the step response of the transfer function H (ny
inputs and ny outputs).The input channels have names e@yname,
where yname is the name of the corresponding output.

• If m is a time series, that is, nu = 0, step(m) plots the step response
of the transfer function H.
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• step(noisecnv(m)) plots the step response of the transfer function
[G H] (nu+ny inputs and ny outputs). The noise input channels have
names e@yname, where yname is the name of the corresponding
output.

• step(noisecnv(m,'norm')) plots the step response of the transfer
function [G HL] (nu+ny inputs and ny outputs). The noise input
channels have names v@yname, where yname is the name of the
corresponding output.

Arguments If step is called with a single idmodel m, the output argument y is a 3-D
array of dimension Nt-by-ny-by-nu. Here Nt is the length of the time
vector t, ny is the number of output channels, and nu is the number of
input channels. Thus y(:,ky,ku) is the response in the kyth output
channel to a step in the kuth input channel. No plot is produced when
output arguments are used.

ysd has the same dimensions as y and contains the standard deviations
of y. This is normally computed using sim. However, when the model m
contains an estimated delay (dead time) as in certain process models,
the standard deviation is estimated with Monte Carlo techniques, using
simsd.

If step is called with an output argument and a single data set in
the input arguments, the output is returned as an idarx modelmod
containing the high-order FIR model, and its uncertainty. By calling
step with mod, the responses can be displayed and returned without
your having to redo the estimation.

Examples step(data,'sd',3) estimates and plots the step response

mod = step(data)
step(mod,'sd',3)

See Also cra

impulse
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Purpose Generate model structure matrices

Syntax NN = struc(NA,NB,NK)

Description struc returns in NN the set of model structures composed of all
combinations of the orders and delays given in row vectors NA, NB,
and NK. The format of NN is consistent with the input format used by
arxstruc and ivstruc. The command is intended for single-input
systems only.

Examples The statement

NN = struc(1:2,1:2,4:5);

produces

NN =
1 1 4
1 1 5
1 2 4
1 2 5
2 1 4
2 1 5
2 2 5

See Also arxstruc

ivstruc

selstruc
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Purpose Convert idmodel objects of System Identification Toolbox to
transfer-function LTI models of Control System Toolbox

Syntax sys = tf(mod)
sys = tf(mod,'m')

Description mod is any idmodel object: idgrey, idarx, idpoly, idproc, idss, or
idmodel.

sys is returned as a transfer function tf LTI model object. The noise
input channels in mod are treated as follows:

Consider a model mod with both measured input channels u (nu
channels) and noise channels e (ny channels) with covariance matrix

where L is a lower triangular matrix. mod.NoiseVariance = . The
model can also be described with a unit variance, normalized noise
source v.

Both measured input channels u and normalized noise input channels v
in mod are input channels in sys. The noise input channels belongs to
the InputGroup 'Noise', while the others belong to the InputGroup
'Measured'. The names of the noise input channels will be v@yname,
where yname is the name of the corresponding output channel. This
means that the LTI object realizes the transfer function [G HL].

To transform only the measured input channels in mod, use

sys = tf(mod('m')) or sys = tf(mod,'m')

This gives a representation of G only.
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For a time series, (no measured input channels, nu = 0), the LTI
representation contains the transfer functions from the normalized
noise sources v to the outputs, that is, HL. If the model mod has both
measured and noise inputs, sys = tf(mod('n')) gives a representation
of the additive noise.

In addition, you can use normal subreferencing.

sys = tf(mod(1,[3 4]))

If you want to describe [G H] or H (unnormalized noise), from e to
y, first use

mod = noisecnv(mod)

to convert the noise channels e to regular input channels. These
channels are assigned the names e@yname.

See Also frd

ss

zpk
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Purpose Convert model to transfer-function form

Syntax [num,den] = tfdata(m)
[num,den,sdnum,sdden] = tfdata(m)
[num,den,sdnum,sdden] = tfdata(m,'v')

Description m is a model given as any idmodel object with ny output channels and
nu input channels.

num is a cell array of dimension ny-by-nu. num{ky,ku} (note the curly
brackets) contains the numerator of the transfer function from input
ku to output ky. This numerator is a row vector whose interpretation
is described below.

Similarly, den is an ny-by-nu cell array of the denominators.

sdnum and sdden have the same formats as num and den. They contain
the standard deviations of the numerator and denominator coefficients.

If m is a SISO model, adding an extra input argument 'v' (for vector)
will return num and den as vectors rather than cell arrays.

The formats of num and den are the same as those used by the
Signal Processing Toolbox and Control System Toolbox, both for
continuous-time and discrete-time models.

The noise input channels in m are treated as follows: Consider a model m
with both measured input channels u (nu channels) and noise channels
e (ny channels) with covariance matrix

where L is a lower triangular matrix. Note that m.NoiseVariance =
. The model can also be described with a unit variance, normalized

noise source v:
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• tfdata(m) returns the transfer function G.

• tfdata(m('n')) returns the transfer function H (ny inputs and ny
outputs).

• If m is a time series, that is, nu = 0, tfdata(m) returns the transfer
function H.

• tfdata(noisecnv(m)) returns the transfer function [G H] (nu+ny
inputs and ny outputs).

• tfdata(noisecnv(m,'norm')) returns the transfer function [G HL]
(nu+ny inputs and ny outputs).

Examples For a continuous-time model,

num = [1 2]
den = [1 3 0]

corresponds to the transfer function

For a discrete-time model,

num = [2 4 0]
den = [1 2 3 5]

corresponds to the transfer function

which is the same as
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Note that for discrete-time models, idpoly and polydata have a
different interpretation of the numerator vector, in case it does not
have the same length as the denominator vector. To avoid confusion,
fill out with zeros to make numerator and denominator vectors the
same length. Do this with tfdata.

See Also idpoly

noisecnv
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Purpose Return date and time when object was created or last modified

Syntax timestamp(obj)
ts = timestamp(obj)

Description obj is any idmodel, iddata, or idfrd object. timestamp returns or
displays a string with information about when the object was created
and last modified.
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Purpose Store binary-tree nonlinearity estimator for nonlinear ARX models

Syntax t=treepartition('NumberOfUnits',N)
t=treepartition(Property1,Value1,...PropertyN,ValueN)

Description treepartition is an object that stores the binary-tree nonlinear
estimator for estimating nonlinear ARX models.

You can use the constructor to create the nonlinearity object, as follows:

t=treepartition('NumberOfUnits',N) creates a binary tree
nonlinearity estimator object with N terms in the binary tree expansion.
The tree has the number of leaves equal to the largest integer less than
N of the form 2^n-1.

t=treepartition(Property1,Value1,...PropertyN,ValueN) creates
a binary tree nonlinearity estimator object specified by properties in
“treepartition Properties” on page 12-322.

Use evaluate(t,x) to compute the value of the function defined by
the treepartition object t at x. At this stage, an adaptive pruning
algorithm is used to select an active partition D_a(= D_a(x)) on the
branch of tree partitions that contain x.

Remarks Use treepartition to define a nonlinear function y F x= ( ) , where
F is a piecewise-linear (affine) function of x, y is scalar, and x is a
1-by-m vector. F is a local linear mapping, where x-space partitioning is
determined by a binary tree.

The binary-tree network function is based on the following function
expansion:

F x xL x C da( ) ,= + [ ] +1

x belongs to the active partition Da . Dk is a partition of x-space. L
is 1-by-m vector.

Ck is a 1-by-(m+1) vector.

d is a scalar.
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The active partition Da is computed as an intersection of half-spaces by
a binary tree, as follows:

1 Tree with N nodes and J levels is initialized.

2 Node at level J is a terminating leaf and a node at level j<J has two
descendants at level j+1. The number of leaves in the tree is N =
2^(J+1)-1, which is determined by the NumberOfUnits property of
the treepartition object.

3 Partition at node r is based on [1,x]*B_r > 0 or <= 0 (move to left
or right descendant), where B_r is chosen to improve the stability of
least-square computation on the partitions at the descendant nodes.

4 Compute at each node r the coefficients C_r of best linear
approximation of unknown regression function on D_r using
penalized least-squares algorithm.

treepartition
Properties

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(t)
% Get value of NumberOfUnits property
t.NumberOfUnits

You can use dot notation to assign property values to the object. set is
not supported for MCOS objects.

For example, the following two commands are equivalent:

t.NumberOfUnits=5

The Options property is a structure. To set the values of this structure,
you can use the following syntax, for example:
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X=struct('FinestCell',2,
'Threshold',0.5,
'Stabilizer',1e-5);

C.Options=X;

Property Name Description

NumberOfUnits Integer specifies the number of nodes in the tree.
Default='auto' select the number of nodes from the data
using the pruning algorithm.

For example:

treepartition('NumberOfUnits',5)
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Property Name Description

Parameters Structure containing the following fields:

• RegressorMean: 1-by-m vector containing the means of x
in estimation data, r.

• RegressorMinMax: m-by-2 matrix containing the maximum
and minimum estimation-data regressor values.

• OutputOffset: scalar d.

• LinearCoef: m-by-1 vector L.

• SampleLength: Length of estimation data.

• NoiseVariance: Estimated variance of the noise in
estimation data.

• NonlinearParameters: A structure containing the following
tree parameters:

- TreeLevelPntr: N-by-1 vector containing the levels j of
each node.

- AncestorDescendantPntr: N-by-3 matrix, such that the
entry (k,1) is the ancestor of node k, and entries (k,2)
and (k,3) are the left and right descendants, respectively.

- LocalizingVectors: N-by-(m+1) matrix, such that the
rth row is B_r.

- LocalParVector: N-by-(m+1) matrix, such that the kth
row is C_k.

- LocalCovMatrix: N-by-((m+1)m/2) matrix such that the
kth row is the covariance matrix of C_k. C_k is reshaped
as a row vector.
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Property Name Description

Options Structure containing the following fields that affect the initial
model:

• FinestCell: Integer or string specifying the minimum
number of data points in the smallest partition.
Default: 'auto', which computes the value from the data.

• Threshold: Threshold parameter used by the
adaptive pruning algorithm. Smaller threshold
values correspond to shorter is the branch that
is terminated by the active partition D_a. Higher
threshold value results in a longer branch.
Default: 1.0.

• Stabilizer: Penalty parameter of the penalized
least-squares algorithm used to compute local parameter
vectors C_k. Higher stabilizer value improves stability, but
may deteriorate the accuracy of the least-square estimate.
Default: 1e-6.

Examples Use treepartition to specify the nonlinear estimator in nonlinear
ARX models. For example:

m=nlarx(Data,Orders,treepartition('num',5));

The following commands provide an example examples of using
advanced treepartition options:

% Define the treepartition object
t=treepartition('num',100);
% Set the Threshold, which is a field
% in the Options structure
opt=t.options;
opt.Threshold=2;
t.options=opt;
% Estimate the nonlinear ARX model
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m=nlarx(Data,Orders,t);

See Also nlarx
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Purpose Specify absence of nonlinearities for specific input or output channels
in Hammerstein-Wiener models

Syntax unit=unitgain

Description unit=unitgain instantiates an object that specifies an identity
mapping F(x)=x to exclude specific input and output channels from
being affected by a nonlinearity in Hammerstein-Wiener models.

Use the unitgain object as an argument in the nlhw estimator to set
the corresponding channel nonlinearity to unit gain.

For example, for a two-input and one-output model, to exclude the
second input from being affected by a nonlinearity, you the following
syntax:

m = nlhw(data,orders,['saturation''unitgain'],'deadzone')

In this case, the first input saturates and the output has an associated
deadzone nonlinearity.

Remarks Use the unitgain object to exclude specific input and output channels
from being affected by a nonlinearity in Hammerstein-Wiener models.

unitgain is a linear function y F x= ( ) , where F(x)=x.

unitgain
Properties

unitgain does not have properties.

Examples For example, for a one-input and one-output model, to exclude the
output from being affected by a nonlinearity, you the following syntax:

m = nlhw(Data,Orders,'saturation','unitgain')

In this case, the input saturates.

If nonlinearities are absent in input or output channels, you can replace
unitgain with an empty matrix. For example, to specify a Wiener
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model with a sigmoid nonlinearity at the output and a unit gain at the
input, use the following command:

m = nlhw(Data,Orders,[],'sigmoid');

See Also deadzone

nlhw

saturation

sigmoidnet
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Purpose Plot model characteristics using LTI viewer in Control System Toolbox

Syntax view(m)
view(m('n'))
view(m1,...,mN,Plottype)
view(m1,PlotStyle1,...,mN,PlotStyleN)

Description m is the output-input data to be graphed, given as any idfrd or idmodel
object. After appropriate model transformations, the LTI viewer of
Control System Toolbox is invoked. This allows bode, nyquist, impulse,
step, and zero/poles plots.

To compare several models m1,...,mN, use view(m1,...,mN). With
PlotStyle, the color, line style, and marker of each model can be
specified.

view(m1,'y:*',m2,'b')

Adding Plottype as a last argument specifies the type
of plot in which view is initialized. Plottype is any of
'impulse','step','bode','nyquist','nichols','sigma', or
'pzmap'. It can also be given as a cell array containing any collection of
these strings (up to 6) in which case a multiplot is shown.

view does not display confidence regions. For that, use bode, nyquist,
impulse, step, and pzmap.

The noise input channels in m are treated as follows: Consider a model m
with both measured input channels u (nu channels) and noise channels
e (ny channels) with covariance matrix

where L is a lower triangular matrix. Note that m.NoiseVariance =
. The model can also be described with a unit variance, normalized

noise source v:
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• view(m) plots the characteristics of the transfer function G.

• view(m('n')) plots the characteristics of the transfer function HL
(ny inputs and ny outputs). The input channels have names v@yname,
where yname is the name of the corresponding output.

• If m is a time series, that is, nu = 0, view(m) plots the characteristics
of the transfer function HL.

• view(noisecnv(m)) plots the characteristics of the transfer function
[G H] (nu+ny inputs and ny outputs). The noise input channels have
names e@yname, where yname is the name of the corresponding
output.

• view(noisecnv(m,'norm')) plots the characteristics of the transfer
function [G HL] (nu+ny inputs and ny outputs). The noise input
channels have names v@yname, where yname is the name of the
corresponding output.

view does not give access to all of the features of ltiview. Use

ml = ss(m), ltiview(Plottype,ml,...)

to reach these options.

See Also bode

impulse

nyquist

pzmap

step
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Purpose Store wavelet network nonlinearity estimator for nonlinear ARX and
Hammerstein-Wiener models

Syntax s=wavenet('NumberOfUnits',N)
s=wavenet(Property1,Value1,...PropertyN,ValueN)

Description wavenet is an object that stores the wavelet network nonlinear
estimator for estimating nonlinear ARX and Hammerstein-Wiener
models.

You can use the constructor to create the nonlinearity object, as follows:

s=wavenet('NumberOfUnits',N) creates a wavelet nonlinearity
estimator object with N terms in the wavelet expansion.

s=wavenet(Property1,Value1,...PropertyN,ValueN) creates
a wavelet nonlinearity estimator object specified by properties in
“wavenet Properties” on page 12-332.

Use evaluate(s,x) to compute the value of the function defined by
the wavenet object s at x.

Remarks Use wavenet to define a nonlinear function y F x= ( ) , where y is scalar
and x is an m-dimensional row vector. The wavelet network function is
based on the following function expansion:

F x x r PL a f b x r Q cs s s( ) ( )= − + −( )( ) −( ) +1 1 1 K
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where f is a scaling function and g is the wavelet function. P and Q
are m-by-p and m-by-q projection matrices, respectively. The projection
matrices P and Q are determined by principal component analysis of
estimation data. Usually, p=m. If the components of x in the estimation
data are linearly dependent, then p<m. The number of columns of Q, q,
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corresponds to the number of components of x used in the scaling and
wavelet function.

When used in a nonlinear ARX model, q is equal to the size of the
NonlinearRegressors property of the idnlarx object. When used in a
Hammerstein-Wiener model, m=q=1 and Q is a scalar.

r is a 1-by-m vector and represents the mean value of the regressor
vector computed from estimation data.

d, as, bs, aw, and bw are scalars. Parameters with the s subscript are
scaling parameters, and parameters with the w subscript are wavelet
parameters.

L is p-by-1 vector.

cs and cw are 1-by-q vectors.

The scaling function f and the wavelet function g are both radial
functions, as follows:

f x e

g x x x x e

x x

x x

( )

( ) ( ( ) - ’ )

- . ’

- . ’

=

=

0 5

0 5  dim

wavenet
Properties

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(w)
% Get value of NumberOfUnits property
w.NumberOfUnits

You can use dot notation to assign property values to the object. set is
not supported for MCOS objects.

For example, the following two commands are equivalent:

12-332



wavenet

w.NumberOfUnits=5

The Options property is a structure. Typically, the values of this
structure are set by estimating a model with a wavenet nonlinearity. If
you need to set the values of this structure, you can use the following
syntax:

O=struct('FinestCell',2,
'MinCells',10,
'MaxCells',50,
'MaxLevels',5,
'DilationStep',1,
'TranslationStep',2);

w.Options=O;

Property Name Description

NumberOfUnits Integer specifies the number of
nonlinearity units in the expansion.
Default='auto'.

For example:

wavenet('NumberOfUnits',5)

LinearTerm Can have the following values:

• 'on'—(Default) Estimates the vector L in the expansion.

• 'off'—Fixes the vector L to zero and omits the term

x r PL−( ) .

For example:

wavenet(H,'LinearTerm','on')
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Property Name Description

Parameters Structure containing the parameters in the nonlinear
expansion, as follows:

• RegressorMean: 1-by-m vector containing the means of x
in estimation data, r.

• NonLinearSubspace: m-by-q matrix containing Q.

• LinearSubspace: m-by-p matrix containing P.

• LinearCoef: p-by-1 vector L.

• ScalingDilation: ns-by-1 matrix containing the values
bs_k.

• WaveletDilation: nw-by-1 matrix containing the values
bw_k.

• ScalingTranslation: ns-by-q matrix containing the values
cs_k.

• WaveletTranslation: nw-by-q matrix containing the values
cw_k.

• ScalingCoef: ns-by-1 vector containing the values as_k.

• WaveletCoef: nw-by-1 vector containing the values aw_k.

• OutputOffset: scalar d.
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Property Name Description

Options Structure containing the following fields that affect the initial
model:

• FinestCell: Integer or string specifying the minimum
number of data points in the smallest cell. A cell is the area
covered by the significantly nonzero portion of a wavelet.
Default: 'auto', which computes the value from the data.

• MinCells: Integer specifying the minimum number of cells
in the partition. Default: 16.

• MaxCells: Integer specifying the maximum number of cells
in the partition. Default: 128.

• MaxLevels: Integer specifying the maximum number of
wavelet levels. Default: 10.

• DilationStep: Real scalar specifying the dilation step size.
Default: 2.

• TranslationStep: Real scalar specifying the translation
step size. Default: 1.

Examples Use wavenet to specify the nonlinear estimator in nonlinear ARX and
Hammerstein-Wiener models. For example:

m=nlarx(Data,Orders,wavenet);

See Also nlarx

nlhw

12-335



zpk

Purpose Convert idmodel objects of System Identification Toolbox to state-space
LTI models of Control System Toolbox

Syntax sys = zpk(mod)
sys = zpk(mod,'m')

Description mod is any idmodel object: idgrey, idarx, idpoly, idproc, idss, or
idmodel.

sys is returned as a zpk LTI model object. The noise input channels in
mod are treated as follows: consider a model mod with both measured
input channels u (nu channels) and noise channels e (ny channels) with
covariance matrix

where L is a lower triangular matrix. Note that mod.NoiseVariance =
. The model can also be described with a unit variance, normalized

noise source v.

Both measured input channels u and normalized noise input channels v
in mod are input channels in sys. The noise input channels belongs to
the InputGroup 'Noise', while the others belong to the InputGroup
'Measured'. The names of the noise input channels are given by
v@yname, where yname is the name of the corresponding output channel.
This means that the LTI object realizes the transfer function [G HL].

To transform only the measured input channels in sys, use

sys = zpk(mod('m')) or sys = zpk(mod,'m')

This gives a representation of G only.

For a time series, (no measured input channels, nu = 0), the LTI
representation contains the transfer functions from the normalized
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noise sources v to the outputs, that is, HL. If the model mod has
both measured and noise inputs, sys = zpk(mod('n')) gives a
representation of the additive noise.

In addition, the normal subreferencing can be used.

sys = zpk(mod(1,[3 4]))

If you want to describe [GH] or H (unnormalized noise), from e to y,
first use

mod = noisecnv(mod)

to convert the noise channels e to regular input channels. These
channels are assigned have the names e@yname.

See Also frd

ss

tf
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Purpose Compute zeros, poles, and gains of transfer-function models

Syntax [z,p,k] = zpkdata(m)
[z,p,k,dz,dp,dk] = zpkdata(m)
[z,p,k,dz,dp,dk] = zpkdata(m,'v')

Description m is a model given as any idmodel object with ny output channels and
nu input channels.

z is a a cell array of dimension ny-by-nu. z{ky,ku} (note the curly
brackets) contains the zeros of the transfer function from input ku to
output ky. This is a column vector of possibly complex numbers.

Similarly, p is an ny-by-nu cell array containing the poles.

k is a ny-by-nu matrix whose ky-ku entry is the transfer function gain of
the transfer function from input ku to output ky. Note that the transfer
function gain is the value of the leading coefficient of the numerator
when the leading coefficient of the denominator is normalized to 1. It
thus differs from the static gain. The static gain can be retrieved as Ks
= freqresp(m,0).

dz contains the covariance matrices of the zeros in the following
way: dz is a ny-by-nu cell array. dz{ky,ku} contains the covariance
information about the zeros of the transfer function from ku to ky. It is
a 3-D array of dimension 2-by-2-by-Nz, where Nz is the number of zeros.
dz{ky,ku}(:,:,kz) is the covariance matrix of the zero z{ky,ku}(kz),
so that the 1-1 element is the variance of the real part, the 2-2 element
is the variance of the imaginary part, and the 1-2 and 2-1 elements
contain the covariance between the real and imaginary parts.

dp contains the covariance matrices of the poles in the same way.

dk is a matrix containing the variances of the elements of k.

If m is a SISO model, adding an extra input argument 'v’ (for vector)
returns z and p as vectors rather than cell arrays.

Note that the zeros and the poles are associated with the different
channel combinations. To obtain the so-called transmission zeros, use
tzero.
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The noise input channels in m are treated as follows: Consider a model m
with both measured input channels u (nu channels) and noise channels
e (ny channels) with covariance matrix

where L is a lower triangular matrix. Note that m.NoiseVariance =
. The model can also be described with a unit variance, normalized

noise source v.

Then,

• zpkdata(m) returns the zeros and poles of G.

• zpkdata(m('n')) returns the zeros and poles of H (ny inputs and
ny outputs).

• If m is a time series, that is, nu = 0, zpkdata(m) returns the zeros
and poles of H.

• zpkdata(noisecnv(m)) returns the zeros and poles of the transfer
function [G H] (nu+ny inputs and ny outputs).

• zpkdata(noisecnv(m,'norm')) returns the zeros and poles of the
transfer function [GHL] (nu+ny inputs and ny outputs).

The procedure handles both models in continuous and discrete time.

Note that you cannot rely on information about zeros and poles at the
origin and at infinity for discrete-time models. (This is a somewhat
confusing issue anyway.)

Algorithm The poles and zeros are computed using ss2zp. The covariance
information is computed using the Gauss approximation formula, using
the parameter covariance matrix contained in m. When the transfer
function depends on the parameters, numerical differentiation is
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applied. The step sizes for the differentiation are determined in the
M-file nuderst.
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